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Abstract. We derive a refined conjecture for the variance of Gaussian
primes across sectors, with a power saving error term, by applying the
L-functions Ratios Conjecture. We observe a bifurcation point in the
main term, consistent with the Random Matrix Theory (RMT) heuristic
previously proposed by Rudnick and Waxman. Our model also identifies
a second bifurcation point, undetected by the RMT model, that emerges
upon taking into account lower order terms. For sufficiently small sec-
tors, we moreover prove an unconditional result that is consistent with
our conjecture down to lower order terms.

1. Introduction

Consider the ring of Gaussian integers Z[i], which is the ring of integers of
the imaginary quadratic field Q(i). Let a = 〈α〉 be an ideal in Z[i] gener-
ated by the Gaussian integer α ∈ Z[i]. The norm of the ideal a is defined as
N(a) := α ·α, where α 7→ α denotes complex conjugation. Let θα denote the
argument of α. Since Z[i] is a principal ideal domain, and the generators of
a differ by multiplication by a unit {±1,±i} ∈ Z[i]×, we find that θa := θα
is well-defined modulo π/2. We may thus fix θa to lie in [0, π/2), which
corresponds to choosing a generator α that lies within the first quadrant of
the complex plane.

We are interested in studying the angular distribution of {θp} ∈ [0, π/2),
where p ( Z[i] are the collection of prime ideals with norm N(p) ≤ X. To
optimize the accuracy of our methods, we employ several standard analytic
techniques. In particular, we count the number of angles lying in a short
segment of length 1/K in [0, π/2] using a smooth window function, denoted
by FK(θ), and we count the number of ideals a with norm N(a) ≤ X using a
smooth function, denoted by Φ. We moreover count prime ideals using the
weight provided by the Von Mangoldt function, defined as Λ(a) = logN(p)
if a = pr is a power of a prime ideal p, and Λ(a) = 0 otherwise.

Let f ∈ C∞c (R) be an even, real-valued window function. For K � 1,
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define

(1.1) FK(θ) :=
∑
k∈Z

f

(
K

π/2

(
θ − π

2
· k
))

,

which is a π/2-periodic function whose support in [0, π/2) is on a scale of
1/K. The Fourier expansion of FK is given by

(1.2) FK(θ) =
∑
k∈Z

F̂K(k)ei4kθ, F̂K(k) =
1

K
f̂

(
k

K

)
,

where the normalization is defined to be f̂ (y) :=
∫
R f(x)e−2πiyxdx.

Let Φ ∈ C∞c (0,∞) and denote the Mellin transform of Φ by

(1.3) Φ̃(s) :=

∫ ∞
0

Φ(x)xs−1dx.

Define

(1.4) ψK,X(θ) :=
∑
a

Φ

(
N(a)

X

)
Λ(a)FK(θa − θ),

where a runs over all nonzero ideals in Z[i]. We may then think of ψK,X(θ)
as a smooth count for the number of prime power ideals less than X lying
in a window of scale 1/K about θ. As in Lemma 3.1 of [16], the mean value
of ψK,X(θ) is given by

〈ψK,X〉 :=
1

π/2

∫ π
2

0

∑
a

Φ

(
N(a)

X

)
Λ(a)FK(θa − θ)dθ ∼

X

K
· CΦ · cf ,(1.5)

where

(1.6) cf :=
1

4π2

∫
R
f(x)dx, and CΦ := 4π2

∫ ∞
0

Φ(u)du.

For fixed K > 0, then a smooth version of a result from Hecke [9] states
that in the limit as X →∞,

(1.7) ψK,X(θ) ∼ X

K
· cf · CΦ.

Alternatively, one may study the behavior of ψK,X(θ) for shrinking inter-
vals, i.e. for large K. It follows from the work of Kubilius [13] that under
the assumption of the Grand Riemann Hypothesis (GRH), (1.7) continues

to hold for K � X1/2−o(1).

In this paper, we wish to study

Var(ψK,X) :=
1

π/2

∫ π
2

0

∣∣∣∣ψK,X(θ)− 〈ψK,X〉
∣∣∣∣2dθ.(1.8)
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Such a quantity was investigated by Rudnick and Waxman [16], who, as-
suming GRH, obtained an upper bound for Var(ψK,X).1 They then used
this upper bound to prove that almost all arcs of length 1/K contain at

least one angle θp attached to a prime ideal with N(p) ≤ K(logK)2+o(1).

Montogomery [14] showed that the pair correlation of zeros of ζ(s) behaves
similarly to that of an ensemble of random matrices, linking the zero distri-
bution of the zeta function to eigenvalues of random matrices. The Katz-
Sarnak density conjecture [11, 12] extended this connection by relating the
distribution of zeros across families of L-functions to eigenvalues of random
matrices. Random matrix theory (RMT) has since served as an important
aid in modeling the statistics of various quantities associated to L-functions,
such as the spacing of zeros [10, 15, 18], and moments of L-functions [5, 6].
Motivated by a suitable RMT model for the zeros of a family of Hecke
L-functions, as well as a function field analogue, Rudnick and Waxman con-
jectured that

(1.9) Var(ψK,X) ∼
∫
R
f(y)2dy

∫ ∞
0

Φ(x)2dx ·min(logX, 2 logK).

Inspired by calculations for the characteristic polynomials of matrices aver-
aged over the compact classical groups, Conrey, Farmer, and Zirnbauer [3, 4]
further exploited the relationship between L-functions and random matri-
ces to conjecture a recipe for calculating the ratio of a product of shifted
L-functions averaged over a family. The L-functions Ratios Conjecture has
since been employed in a variety of applications, such as computing n-level
densities across a family of L-functions, mollified moments of L-functions,
and discrete averages over zeros of the Riemann Zeta function [7]. The Ra-
tios Conjecture has also been extended to the function field setting [1]. While
constructing a model using the Ratios Conjecture may pose additional tech-
nical challenges, the reward is often a more accurate model; RMT heuristics
can model assymptotic behavior, but the Ratios Conjecture is expected to
hold down to lower order terms. This has been demonstrated, for exam-
ple, in the context of one-level density computations, by Fiorilli, Parks and
Södergren [8].

This paper studies Var(ψK,X) down to lower-order terms. Define a new

parameter λ such that Xλ = K. We prove the following theorem:

Theorem 1.1. Fix λ > 1. Then

(1.10)
Var(ψK,X)

CfX1−λ = CΦ logX + C ′Φ + π2Φ̃

(
1

2

)2

+ o (1) ,

where

1See also [17].
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Cf :=
1

4π2

∫
R
f(y)2dy C ′Φ := 4π2 ·

∫ ∞
0

log x · Φ(x)2 dx,(1.11)

and CΦ is as in (1.6). Under GRH, the error term can be improved to
OΦ (X−ε) for some ε > 0 (depending on λ).

The proof of Theorem 1.1 is given in Section 2, and is obtained by classical
methods. For λ < 1 the computation is more difficult, and we use the Ratios
Conjecture to suggest the following.

Conjecture 1.2. Fix 0 < λ < 1. We have

(1.12)
Var(ψK,X)

CfX1−λ =

{
CΦ logX + ∆Φ +OΦ (X−ε) if 1

2 < λ < 1
CΦ (2λ logX)−KΦ +OΦ (X−ε) if λ < 1

2 ,

where

(1.13) ∆Φ := C ′Φ − π2Φ̃

(
1

2

)2

,

and

(1.14) KΦ := CΦ,ζ − CΦ,L −A′Φ + 2π2Φ̃

(
1

2

)2

+ CΦ

(
log

(
π2

4

)
+ 2

)
,

for some constant ε > 0 (depending on λ). Here CΦ,ζ , CΦ,L, and A′Φ, are as
in (9.25), (9.26), and (9.27), respectively.

Figure 1. A plot of the ratio Var(ψK,X)/(〈ψK,X〉 logX)
versus λ = logK/ logX, for X ≈ 109 with test functions Φ =
1(0,1] and f = 1[− 1

2
, 1
2

]. The red line is the prediction given by

Conjecture 1.2, while the blue line is the RMT Conjecture of
(1.9).



GAUSSIAN PRIMES ACROSS SECTORS 5

Conjecture 1.2 provides a refined conjecture for Var(ψK,X) with a power
saving error term (away from the bifurcation points). It moreover recovers
the asymptotic prediction given by (1.9), which was initially obtained by
completely different methods. Numerical data for Var(ψK,X) is provided in
Figure 1.

A saturation effect similar to the one above was previously observed by
Bui, Keating, and Smith [2], when computing the variance of sums in short
intervals of coefficients of a fixed L-function of high degree. There, too, the
contribution from lower order terms must be taken into account in order to
obtain good agreement with the numerical data.

A proof of Theorem 1.1 is provided in Section 2 below. When λ > 1 the
main contribution to the variance is given by the diagonal terms, which
we directly compute by separately considering the weighted contribution of
split primes (Lemma 2.1) and inert primes (Lemma 2.2). When 0 < λ < 1
we may no longer trivially bound the off-diagonal contribution, and so we
instead shift focus to the study of a relevant family of Hecke L-functions. In
Section 3 we compute the ratios recipe for this family of L-functions, and in
Section 4 we apply several necessary simplifications. Section 5 then relates
the output of this recipe to Var(ψK,X), resulting in Conjecture 5.1, which
expresses Var(ψK,X) in terms of four double contour integrals. Section 6
is dedicated to preliminary technical lemmas, and the double integrals are
then computed in Sections 7−9. One finds that the main contributions to
Var(ψK,X) come from second-order poles, while first-order poles contribute
a correction factor smaller than the main term by a factor of logX.

The Ratios Conjectures moreover suggests an enlightening way to group
terms. The first integral, which corresponds to taking the first piece of each
approximate functional equation in the ratios recipe, corresponds to the con-
tribution of the diagonal terms, computed in Theorem 1.1. In particular,
we note that its contribution to Var(ψK,X) is independent of the value of λ
(Lemma 5.2). In contrast, the contribution emerging from the second and
third integrals depends on the value of λ (Lemma 5.3). This accounts for
the emergence of two bifurcation points in the lower order terms: one at
λ = 1/2 and another at λ = 1. The fourth integral, corresponding to tak-
ing the second piece of each approximate functional equation in the ratios
recipe, only makes a significantly contribution to Var(ψK,X) when λ < 1/2
(Lemma 5.4). This accounts for the bifurcation point in the main term,
previously detected by the RMT model, as well as for the contribution of a
complicated lower-order term, which appears to nicely fit the numerical data.
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search Project at Williams College. We thank Zeev Rudnick for advice,
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2. Proof of Theorem 1.1

Recall that Xλ = K. To compute Var(ψK,X) in the regime λ > 1, it suffices
to calculate the second moment, defined as

ΩK,X :=
1

π/2

∫ π
2

0

∣∣∣∣ψK,X(θ)

∣∣∣∣2dθ
=

2

π

∑
a,b⊂Z[i]

Φ

(
N(a)

X

)
Φ

(
N(b)

X

)
Λ(a)Λ(b)

∫ π
2

0
FK(θa − θ)FK(θb − θ)dθ.

(2.1)

Indeed, note that as in Lemma 3.1 of [16],

(2.2) 〈ψK,X〉 ∼
X

K

∫
R
f(x)dx

∫ ∞
0

Φ(u)du = O

(
X

K

)
,

so that for λ > 1,

Var(ψK,X) = ΩK,X − 〈ψK,X〉2

= ΩK,X +O
(
X1−ε) ,(2.3)

where ε = 2λ− 1.

Suppose a 6= b, and that at least one of θa, θb 6= 0. Then by Lemma 2.1 in
[16],

(2.4) |θa − θb| ≥
1

X
� 1

K
.

Moreover, in order for the integral

(2.5)

∫ π/2

0
FK(θa − θ)FK(θb − θ)dθ

to be nonzero, we require that θa − θb < π
2K . Since X = o(K), such off-

diagonal terms contribute nothing, and the contribution thus only comes
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from terms for which θa = θb. We therefore may write

ΩK,X =
2

π

∑
a⊂Z[i]
θa 6=0

Φ

(
N(a)

X

)2

Λ2(a)

∫ π
2

0
FK(θ)2dθ

+
2

π

∣∣∣∣ ∑
a⊂Z[i]
θa=0

Φ

(
N(a)

X

)
Λ(a)

∣∣∣∣2 ∫ π
2

0
FK(θ)2dθ.

(2.6)

By Parseval’s theorem we have that for sufficiently large K,

2

π

∫ π
2

0
|FK(θ)|2dθ =

∑
k∈Z
|F̂K(k)|2dθ =

1

K2

∑
k∈Z

f̂

(
k

K

)2

= 4π2Cf
K
,(2.7)

and therefore

ΩK,X = 4π2Cf
K

 ∑
a⊂Z[i]
θa 6=0

Φ

(
N(a)

X

)2

Λ2(a) +

∣∣∣∣ ∑
a⊂Z[i]
θa=0

Φ

(
N(a)

X

)
Λ(a)

∣∣∣∣2
 .

(2.8)

Theorem 1.1 then follows from (2.3), (2.8), and the following two lemmas.

Lemma 2.1. We have
(2.9)∑
a⊂Z[i]
θa 6=0

Φ

(
N(a)

X

)2

Λ2(a) =
1

4π2

(
CΦX · logX −XC ′Φ

)
+OΦ

(
Xe−c·

√
logX

)
,

while under GRH, the error term has a power saving, say, to OΦ

(
X2/3

)
.

Lemma 2.2. Unconditionally we have that

(2.10)

∣∣∣∣ ∑
a⊂Z[i]
θa=0

Λ(a)Φ

(
N(a)

X

) ∣∣∣∣2 =
X

4

(
Φ̃

(
1

2

))2

+OΦ

(
Xe−c·

√
logX

)
,

while, again, under GRH, the error term has a power saving.

Proof of Lemma 2.1:

Proof. Consider the quantity

∑
a⊂Z[i]
θa 6=0

Φ

(
N(a)

X

)2

Λ2(a) =
∑

p|p≡1(4)

∞∑
n=1

Φ

(
N(pn)

X

)2

Λ2(p) +

∞∑
m=0

Φ

(
22m+1

X

)2

(log 2)2

=
∑
p≡1(4)

2 · Φ
( p
X

)2
(log p)2 +

∑
p|p≡1(4)

∞∑
n=2

Φ

(
N(pn)

X

)2

Λ2(p) +OΦ (logX) ,

(2.11)
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where we note that since Φ is compactly supported, the sum on the far right
has at most OΦ (logX) terms. Moreover,∑

p|p≡1(4)

Φ

(
N(pn)

X

)2

Λ2(p)� X
1
n

+ε(2.12)

since the sum has at most OΦ(X1/n) terms. It follows that

(2.13)
∑

p|p≡1(4)

∞∑
n=2

Φ

(
N(pn)

X

)2

Λ2(p)�
logX∑
n=2

X
1
n

+ε = OΦ

(
X

2
3

)
,

and therefore

(2.14)
∑
a⊂Z[i]
θa 6=0

Φ

(
N(a)

X

)2

Λ2(a) =
∑
p≡1(4)

2 · Φ
( p
X

)2
(log p)2 +OΦ

(
X

2
3

)
.

Upon setting

(2.15) f(t) := log t · Φ
(
t

X

)2

and

(2.16) ap :=

{
2 · log p if p ≡ 1(4)
0 otherwise,

it follows from Abel’s Summation Formula and the Prime Number Theorem
that

∑
p≡1(4)

2 · Φ
( p
X

)2
(log p)2 =

∫ ∞
1

log t · Φ
(
t

X

)2

dt+O

(∫ ∞
1

t
1
2

+ε · f ′(t)dt
)
.

(2.17)

where the error term assumes RH. Applying the change of variables u :=
t/X, we then obtain that for sufficiently large X,

∫ ∞
1

log t · Φ
(
t

X

)2

dt = X · logX

∫ ∞
0

Φ (u)2 du+X ·
∫ ∞

0
log u · Φ (u)2 du

=
1

4π2

(
X · logXCΦ −XC ′Φ

)
.

(2.18)

Under RH, the error term is then given as∫ ∞
1

t
1
2

+ε · f ′(t)dt�
∫ ∞

1
t−

1
3 · Φ

(
t

X

)2

dt�Φ X
2
3 ,(2.19)

while unconditionally it is as in (2.9). Combining the results of (2.14), (2.17),
(2.18), and (2.19), we then obtain Lemma 2.1. �

Proof of Lemma 2.2:
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Proof. Next, we consider the quantity

∑
a⊂Z[i]
θa=0

Φ

(
N(a)

X

)
Λ(a) = 2

∑
p≡3(4)

∞∑
j=1

Φ

(
p2j

X

)
log p+

∞∑
m=1

Φ

(
22m

X

)
log 2

= 2
∑
p≡3(4)

∞∑
j=1

Φ

(
p2j

X

)
log p+OΦ (logX) .

(2.20)

Since

(2.21)
∑
p≡3(4)

Φ

(
p2j

X

)
log p�Φ X

1
2j

+ε
,

we have that

(2.22)
∑
p≡3(4)

∞∑
j=2

Φ

(
p2j

X

)
log p�Φ (logX) ·X

1
4

+ε = OΦ

(
X

1
3

)
,

and therefore

(2.23)
∑
a⊂Z[i]
θa=0

Φ

(
N(a)

X

)
Λ(a) = 2

∑
p≡3(4)

Φ

(
p2

X

)
Λ(p) +OΦ

(
X

1
3

)
.

Moreover, since

∑
n≡3(4)

Φ

(
n2

X

)
Λ(n) =

∑
p≡3(4)

Φ

(
p2

X

)
Λ(p) +

∑
p≡3(4)

∞∑
j=3
odd

Φ

(
p2j

X

)
Λ(p)

=
∑
p≡3(4)

Φ

(
p2

X

)
Λ(p) +OΦ

(
X

1
3

)
,

(2.24)

we obtain

(2.25)
∑
a⊂Z[i]
θa=0

Φ

(
N(a)

X

)
Λ(a) = 2

∑
n≡3(4)

Φ

(
n2

X

)
Λ(n) +OΦ

(
X

1
3

)
.

By the Mellin inversion theorem, we find that∑
n≡3(4)

Φ

(
n2

X

)
Λ(n) =

∑
n≡3(4)

Λ(n)
1

2πi

∫
(2)

Φ̃(s)

(
n2

X

)−s
ds

=
1

2πi

∫
(2)

Φ̃(s)
∑
n≡3(4)

Λ(n)

n2s
Xsds.

(2.26)
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Let χ0 ∈ (Z/4Z)× denote the principal character, and χ1 ∈ (Z/4Z)× de-
note the non-principal character, with corresponding L-functions given by
L(s, χ0) and L(s, χ1), respectively. Upon noting that

(2.27) χ0(n)− χ1(n) =

{
2 if n = 3 mod 4
0 otherwise,

we obtain

L′

L
(2s, χ1)− L′

L
(2s, χ0) =

∞∑
n=1

Λ(n)(χ0(n)− χ1(n))

n2s

= 2
∞∑

n≡3(4)

Λ(n)

n2s
.

(2.28)

It follows that

2
∑
n≡3(4)

Φ

(
n2

X

)
Λ(n) =

1

2πi

∫
(2)

(
L′

L
(2s, χ1)− L′

L
(2s, χ0)

)
Φ̃(s)Xsds

=
1

4πi

∫
(4)

(
L′

L
(s, χ1)− L′

L
(s, χ0)

)
Φ̃
(s

2

)
X

s
2ds.

(2.29)

Moreover, we compute

(2.30)
L′

L
(s, χ0) = − 1

s− 1
+ γ0 + log 2 +O(s− 1),

where γ0 is the Euler-Mascheroni constant, while L′/L(s, χ1) is holomorphic
about s = 1. Shifting integrals, we pick up a pole at s = 1 and find that

(2.31)
∑
a⊂Z[i]
θa=0

Λ(a)Φ

(
N(a)

X

)
=

1

2
X

1
2 Φ̃

(
1

2

)
+OΦ

(√
Xe−c·

√
logX

)

for some c > 0. Squaring this then yields

(2.32)

∣∣∣∣∣∣∣∣
∑
a⊂Z[i]
θa=0

Λ(a)Φ

(
N(a)

X

)∣∣∣∣∣∣∣∣
2

=
X

4

(
Φ̃

(
1

2

))2

+OΦ

(
Xe−c·

√
logX

)
.

As above, we note that under the assumption of GRH the error term can
be improved to have a power-saving. �

3. Implementing the Ratios Conjecture

Throughout this section, and the remainder of the paper, we will assume
GRH.
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3.1. The Recipe. The L-Functions Ratios Conjecture described in [3], pro-
vides a procedure for computing an average of L-function ratios over a des-
ignated family. Let L(s, f) be an L-function, and F = {f} a family of
characters with conductors c(f), as defined in section 3 of [4]. L(s, f) has
an approximate functional equation given by

(3.1) L(s, f) =
∑
n<x

An(f)

ns
+ ε(f, s)

∑
m<y

Am(f)

m1−s + remainder.

Moreover, one may write

(3.2)
1

L(s, f)
=
∞∑
n=1

µf (n)

ns
,

where the series converges absolutely for Re(s) > 1. To conjecture an as-
ymptotic formula for the average

(3.3)
∑
f∈F

L(1
2 + α, f)L(1

2 + β, f)

L(1
2 + γ, f)L(1

2 + δ, f)
,

the Ratios Conjecture suggests the following recipe.

Step One: Start with

(3.4)
L(1

2 + α, f)L(1
2 + β, f)

L(1
2 + γ, f)L(1

2 + δ, f)
.

Replace each L-function in the numerator with the two terms from its ap-
proximate functional equation, ignore the remainder terms and allow each
of the four resulting sums to extend to infinity. Replace each L-function in
the denominator by its series (3.2). Multiply out the resulting expression to
obtain 4 terms. Write these terms as

(3.5) (product of ε(f, s) factors)
∑

n1,...,n4

(summand).

Step Two: Replace each product of ε(f, s) factors by its expected value
when averaged over the family.

Step Three: Replace each summand by its expected value when averaged
over the family.

Step Four: Call the total Mf := Mf (α, β, γ, δ), and let F = |F|. Then for

(3.6) − 1

4
< Re(α),Re(β) <

1

4
,

1

logF
� Re(γ),Re(δ) <

1

4
,

and

(3.7) Im(α), Im(β), Im(γ), Im(δ)�ε F
1−ε,
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the conjecture is that
(3.8)∑
f∈F

L(1
2 + α, f)L(1

2 + β, f)

L(1
2 + γ, f)L(1

2 + δ, f)
g(c(f)) =

∑
f∈F

Mf

(
1 +O

(
e(− 1

2
+ε)c(f)

))
g(c(f))

for all ε > 0, where g is a suitable weight function.

3.2. Hecke L-functions. We are interested in applying the ratios recipe
to the following family of L-functions. Consider the Hecke character

(3.9) Ξk(a) := (α/α)2k = ei4kθa , k ∈ Z,

which provides a well-defined function on the ideals of Z[i]. To each such
character we may associate an L-function

Lk(s) :=
∑
a⊆Z[i]
a6=0

Ξk(a)

N(a)s
=

∏
p prime

(
1− Ξk(p)

N(p)s

)−1

, Re(s) > 1.(3.10)

Note that Lk(s) = L−k(s), and that

(3.11)

L′k
Lk

(s) = −
∑
a6=0

Λ(a)Ξk(a)

N(a)s
= −

∑
a6=0

Λ(a)Ξk(a)

N(a)s
=

L′−k
L−k

(s) =
L′k
Lk

(s).

Moreover, when k 6= 0, then Lk(s) has an analytic continuation to the entire
complex plane, and satisfies the functional equation

(3.12) ξk(s) := π−(s+|2k|) · Γ(s+ |2k|) · Lk(s) = ξk(1− s).

3.3. Step One: Approximate Function Equation. We seek to apply
the above procedure to compute the average

(3.13)
∑
k 6=0

∣∣∣∣f̂ ( k

K

) ∣∣∣∣2Lk(1
2 + α)Lk(

1
2 + β)

Lk(
1
2 + γ)Lk(

1
2 + δ)

for specified values of α, β, γ, δ. For this particular family of L-functions, we
have

(3.14) ε(f, s) :=
Lk(s)

Lk(1− s)
= π2s−1 · Γ(1− s+ |2k|)

Γ(s+ |2k|)
,

and

Ak(n) =
∑

N(a)=n

Ξk(a),(3.15)
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which is a multiplicative function defined explicitly on prime powers by

(3.16) Ak(p
l) =



∑l/2
j=−l/2 e

2j4kiθp if p ≡ 1(4), l even∑(l−1)/2
j=−(l+1)/2 e

(2j+1)4kiθp if p ≡ 1(4), l odd

0 if p ≡ 3(4), l odd
1 if p ≡ 3(4), l even
(−1)lk if p = 2,

where, for prime p ≡ 1(4), we define θp := θp, where p ⊂ Z[i] is a prime
ideal lying above p. Note, moreover, that the above formula is independent
of our specific choice of p.

As per the recipe, we ignore the remainder term and allow both terms in
the approximate functional equation to be summed to infinity. This allows
us to write

(3.17) Lk(s) ≈
∑
n

Ak(n)

ns
+ π2s−1 · Γ(1− s+ |2k|)

Γ(s+ |2k|)
∑
m

Ak(m)

m1−s ,

upon noting that Ak(n) = Ak(n) for all Ak(n).

To compute the inverse coefficients, write

1

Lk(s)
=
∏
p

(
1− e4kiθp

N(p)s

)

=

(
1− (−1)k

2s

) ∏
p≡1(4)

(
1− (e4kiθp + e−4kiθp)

ps
+

1

p2s

) ∏
p≡3(4)

(
1− 1

p2s

)

=

(
1− Ak(2)

2s

) ∏
p≡1(4)

(
1− Ak(p)

ps
+

1

p2s

) ∏
p≡3(4)

(
1− Ak(p)

ps
− Ak(p

2)

p2s

)
.

(3.18)

We then obtain

(3.19)
1

Lk(s)
=
∑
h

µk(h)

hs
,

where

µk(p
h) :=



1 h = 0

−Ak(p) h = 1

−1 h = 2, p ≡ 3(4)

1 h = 2, p ≡ 1(4)

0 otherwise.

(3.20)
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Multiplying out the resulting expression gives

( ∞∑
h=0

µk(h)

h
1
2

+γ

)( ∞∑
l=0

µk(l)

l
1
2

+δ

)
×

( ∞∑
n=0

Ak(n)

n
1
2

+α
+ π2α ·

Γ(1
2 − α+ |2k|)

Γ(1
2 + α+ |2k|)

∞∑
n=0

Ak(n)

n
1
2
−α

)

×

( ∞∑
m=0

Ak(m)

m
1
2

+β
+ π2β ·

Γ(1
2 − β + |2k|)

Γ(1
2 + β + |2k|)

∞∑
m=0

Ak(m)

m
1
2
−β

)
(3.21)

=
∏
p

 ∑
m,n,h,l

µk(p
h)µk(p

l)Ak(p
n)Ak(p

m)

ph( 1
2

+γ)+l( 1
2

+δ)+n( 1
2

+α)+m( 1
2

+β)


+ π2α ·

Γ(1
2 − α+ |2k|)

Γ(1
2 + α+ |2k|)

∏
p

 ∑
m,n,h,l

µk(p
h)µk(p

l)Ak(p
n)Ak(p

m)

ph( 1
2

+γ)+l( 1
2

+δ)+n( 1
2
−α)+m( 1

2
+β)


+ π2β ·

Γ(1
2 − β + |2k|)

Γ(1
2 + β + |2k|)

∏
p

 ∑
m,n,h,l

µk(p
h)µk(p

l)Ak(p
n)Ak(p

m)

ph( 1
2

+γ)+l( 1
2

+δ)+n( 1
2

+α)+m( 1
2
−β)


+ π2(α+β) ·

Γ(1
2 − α+ |2k|)

Γ(1
2 + α+ |2k|)

Γ(1
2 − β + |2k|)

Γ(1
2 + β + |2k|)

×
∏
p

 ∑
m,n,h,l

µk(p
h)µk(p

l)Ak(p
n)Ak(p

m)

ph( 1
2

+γ)+l( 1
2

+δ)+n( 1
2
−α)+m( 1

2
−β)

 ,

(3.22)

where the above follows upon noting that

( ∞∑
h=0

µk(h)

h
1
2

+γ

)( ∞∑
l=0

µk(l)

l(
1
2

+δ)

)( ∞∑
n=0

Ak(n)

n
1
2

+α

)( ∞∑
m=0

Ak(m)

m
1
2

+β

)

=
∏
p

(∑
h

µk(p
h)

ph( 1
2

+γ)

)(∑
l

µk(p
l)

pl(
1
2

+α)

)(∑
n

Ak(p
n)

pn( 1
2

+α)

)(∑
m

Ak(p
m)

pm( 1
2

+β)

)

=
∏
p

 ∑
m,n,h,l

µk(p
h)µk(p

l)Ak(p
n)Ak(p

m)

ph( 1
2

+γ)+l( 1
2

+δ)+n( 1
2

+α)+m( 1
2

+β)

 .

(3.23)

The algorithm now dictates that we compute the Γ-average

(3.24)

〈
π2(α+β) ·

Γ(1
2 − α+ |2k|)

Γ(1
2 + α+ |2k|)

Γ(1
2 − β + |2k|)

Γ(1
2 + β + |2k|)

〉
K

,
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as well as an average for the quantity coming from the first piece of each
functional equation, namely

(3.25)

〈∏
p

 ∑
m,n,h,l

µk(p
h)µk(p

l)Ak(p
n)Ak(p

m)

ph( 1
2

+γ)+l( 1
2

+δ)+n( 1
2

+α)+m( 1
2

+β)

〉
K

.

Here we write 〈·〉K to denote the average over all 0 < |k| ≤ K. The average
of the remaining three pieces will then follow similarly upon applying the
appropriate change of variables.

3.4. Step Two: Averaging the Gamma Factors. The gamma factor
averages over the family of Hecke L-functions are provided by the following
lemma.

Lemma 3.1. Fix 0 < α, β < 1
2 . We find that

〈
Γ(1

2 − α+ |2k|)
Γ(1

2 + α+ |2k|)

〉
K

=
(2K)−2α

1− 2α
+O

(
K−1

)
,(3.26)

and similarly〈
Γ(1

2 − α+ |2k|)
Γ(1

2 + α+ |2k|)
Γ(1

2 − β + |2k|)
Γ(1

2 + β + |2k|)

〉
K

=
(2K)−2(α+β)

1− 2(α+ β)
+O

(
K−1

)
.(3.27)

Proof. A proof of (3.26) is given in [19], and the proof of (3.27) is essentially
identical. Specifically, one may use Stirling’s approximation and Taylor
expansion to demonstrate that
(3.28)

Γ
(

1
2 + |2k| − α

)
Γ
(

1
2 + |2k|+ α

) Γ
(

1
2 + |2k| − β

)
Γ
(

1
2 + |2k|+ β

) =

(
1

2
+ |2k|

)−2(α+β)(
1 +O

(
1

k

))
,

and then average over 0 < |k| ≤ K to obtain (3.27). �

3.5. Step Three: Coefficient Average. In this section, we seek to com-
pute the coefficient average

(3.29)

〈
µk(p

h)µk(p
l)Ak(p

n)Ak(p
m)

〉
K

.

To do so, we must consider several cases depending on the value of p mod
4. Define

δp(m,n, h, l) := lim
K→∞

〈
µk(p

h)µk(p
l)Ak(p

n)Ak(p
m)

〉
K

(3.30)

and write

δp(m,n, h, l) :=


δ3(4)(m,n, h, l) when p ≡ 3(4)

δ1(4)(m,n, h, l) when p ≡ 1(4)

δ2(m,n, h, l) when p = 2.

(3.31)
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3.5.1. p ≡ 1(4): By (3.20), we may restrict to the case in which h, l ∈
{0, 1, 2}. If h, l ∈ {0, 2}, then δ1(4)(m,n, h, l) reduces to 〈Ak(pm)Ak(p

n)〉K ,
where

(3.32) Ak(p
m) =


∑m

2

j=−m
2
e2j4kiθp m even∑ (m−1)

2

j=− (m+1)
2

e(2j+1)4kiθp m odd.

Expanding the product Ak(p
m)Ak(p

n) yields a double sum of points on the
unit circle, and averaging over k ≤ K then eliminates, in the limit, any such
terms which are not identically equal to 1. Collecting the significant terms,
we find that

δ1(4)(m,n, h, l) =

{
min {m,n}+ 1 m+ n even

0 m+ n odd.
(3.33)

If either h = 1 and l ∈ {0, 2}, or l = 1 and h ∈ {0, 2}, then the product
µk(p

h)µk(p
l) = −Ak(p) = −(e4kiθp + e−4kiθp), so that (3.29) reduces to

(3.34)
〈
−
(
e4kiθp + e−4kiθp

)
Ak(p

m)Ak(p
n)
〉
K
.

Expanding out this product yields again a sum of points on the unit circle,
which upon averaging over k ≤ K eliminates, in the limit, any such terms
not identically equal to 1. We then obtain

δ1(4)(m,n, h, l) =

{
0 m+ n even

−2 (min {m,n}+ 1) m+ n odd.
(3.35)

Finally, suppose h = l = 1. In this case, the product µk(p
h)µk(p

l) =
Ak(p)

2 = e2·4kiθp + 2 + e−2·4kiθp , so that (3.29) reduces to

(3.36)
〈(
e2·4kiθp + 2 + e−2·4kiθp

)
Ak(p

m)Ak(p
n)
〉
K
.

Collecting significant contributions as before, we conclude that

δ1(4)(m,n, h, l) =


4n+ 2 m = n

4 (min {m,n}+ 1) m 6= n,m+ n even

0 m+ n odd.

(3.37)

3.5.2. p ≡ 3(4): Again we may restrict to the case in which h, l ∈ {0, 2}.
If h = l ∈ {0, 2}, then µk(p

h)µk(p
l) = 1, and therefore

δ3(4)(m,n, h, l) =

{
1 m,n are even

0 otherwise.
(3.38)

Likewise, if (h, l) = (0, 2) or (h, l) = (2, 0) then µk(p
h)µk(p

l) = −1 and

δ3(4)(m,n, h, l) =

{
−1 m,n are even

0 otherwise.
(3.39)
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3.5.3. p = 2: When p = 2, we may restrict to the case in which h, l ∈
{0, 1}. If, moreover, h = l, then

δ2(m,n, h, l) =
〈
(−1)(m+n)k

〉
K

=

{
1 m+ n is even

0 otherwise,
(3.40)

while if h 6= l,

δ2(m,n, h, l) = −
〈
(−1)(m+n+1)k

〉
K

=

{
−1 m+ n is odd

0 otherwise.
(3.41)

3.5.4. Summary: Summarizing the above results, we then conclude that

δ1(4)(m,n, h, l) =



min {m,n}+ 1 m+ n even, h, l ∈ {0, 2}
−2(min {m,n}+ 1) m+ n odd, (h, l) = (0, 1), (1, 0), (1, 2) or (2, 1)

4n+ 2 m = n, (h, l) = (1, 1)

4 (min {m,n}+ 1) m 6= n, m+ n even, (h, l) = (1, 1)

0 otherwise,

δ3(4)(m,n, h, l) =


1 m,n even, (h, l) = (0, 0) or (2, 2)

−1 m,n even, (h, l) = (0, 2) or (2, 0)

0 otherwise,

δ2(m,n, h, l) =


1 m+ n even, (h, l) = (0, 0) or (1, 1)

−1 m+ n odd, (h, l) = (0, 1) or (1, 0)

0 otherwise.

(3.42)

3.6. Step Four: Conjecture. Upon applying the averages, the Ratios
Conjecture recipe claims that for α, β, γ, δ satisfying the conditions specified
in (3.6), we have

∑
k 6=0

∣∣∣∣f̂ ( k

K

) ∣∣∣∣2Lk(1
2 + α)Lk(

1
2 + β)

Lk(
1
2 + γ)Lk(

1
2 + δ)

=
∑
k 6=0

∣∣∣∣f̂ ( k

K

) ∣∣∣∣2MK(α, β, γ, δ) +O
(
K

1
2

+ε
)
,

(3.43)

where

MK(α, β, γ, δ) :=
∏
p

Gp(α, β, γ, δ) +
(π/2K)2α

1− 2α

∏
p

Gp(−α, β, γ, δ)

+
(π/2K)2β

1− 2β

∏
p

Gp(α,−β, γ, δ) +
(π/2K)2(α+β)

1− 2(α+ β)

∏
p

Gp(−α,−β, γ, δ),

(3.44)
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and

(3.45) Gp(α, β, γ, δ) :=
∑

m,n,h,l

δp(m,n, h, l)

ph( 1
2

+γ)+l( 1
2

+δ)+n( 1
2

+α)+m( 1
2

+β)
.

4. Simplifying the Ratios Conjecture Prediction

In this section we seek a simplified form of MK(α, β, γ, δ). First, we again
consider several separate cases, depending on the value of p mod 4.

4.1. Pulling out Main Terms. Suppose p ≡ 3(4). By (3.42), we expand
each local factor as

Gp(α, β, γ, δ) =
∑
m,n
even

δ3(4)(m,n, 0, 0)

pn( 1
2

+α)+m( 1
2

+β)
+

δ3(4)(m,n, 2, 2)

p2( 1
2

+γ)+2( 1
2

+δ)+n( 1
2

+α)+m( 1
2

+β)

+
δ3(4)(m,n, 0, 2)

p2( 1
2

+δ)+n( 1
2

+α)+m( 1
2

+β)
+

δ3(4)(m,n, 2, 0)

p2( 1
2

+γ)+n( 1
2

+α)+m( 1
2

+β)

=
∑
m,n
even

1

pn( 1
2

+α)+m( 1
2

+β)
+

1

p(1+2γ)+(1+2δ)+n( 1
2

+α)+m( 1
2

+β)

− 1

p(1+2δ)+n( 1
2

+α)+m( 1
2

+β)
− 1

p(1+2γ)+n( 1
2

+α)+m( 1
2

+β)

=

(
1 +

1

p2+2γ+2δ
− 1

p1+2δ
− 1

p1+2γ

)∑
m,n

1

pn(1+2α)+m(1+2β)
.

(4.1)

Assuming small positive fixed values of Re(α),Re(β),Re(γ),Re(δ), we factor
out all terms which, for fixed p, converge substantially slower than 1/p2 and
note that

Gp(α, β, γ, δ) =

(
1− 1

p1+2δ
− 1

p1+2γ
+O

(
1

p2

))(
1 +

1

p1+2α
+

1

p1+2β
+O

(
1

p2

))
= 1− 1

p1+2δ
− 1

p1+2γ
+

1

p1+2α
+

1

p1+2β
+O

(
1

p2

)
=

(
1− 1

p1+2α

)−1(
1− 1

p1+2β

)−1(
1− 1

p1+2γ

)(
1− 1

p1+2δ

)
+O

(
1

p2

)
.

(4.2)

In fact we write

Gp(α, β, γ, δ) = Yp(α, β, γ, δ)×Ap(α, β, γ, δ),



GAUSSIAN PRIMES ACROSS SECTORS 19

where

Yp(α, β, γ, δ) :=

(
1− 1

p1+α+γ

)(
1− 1

p1+β+γ

)(
1− 1

p1+α+δ

)(
1− 1

p1+β+δ

)
(

1− 1
p1+2α

)(
1− 1

p1+2β

)(
1− 1

p1+α+β

)(
1− 1

p1+γ+δ

)
×

(
1 + 1

p1+α+γ

)(
1 + 1

p1+β+γ

)(
1 + 1

p1+α+δ

)(
1 + 1

p1+β+δ

)
(

1 + 1
p1+α+β

)(
1 + 1

p1+2γ

)(
1 + 1

p1+2δ

)(
1 + 1

p1+γ+δ

)(4.3)

and Ap(α, β, γ, δ) := Gp(α, β, γ, δ)/Yp(α, β, γ, δ) is another local function,
which converges like 1/p2 for sufficient small Re(α),Re(β),Re(γ), and Re(δ).

Next, suppose p ≡ 1(4). Factoring out terms with slow convergence as
above, we expand Gp(α, β, γ, δ) as

Gp(α, β, γ, δ) =
∑
m+n
even

(
min {m,n}+ 1

pn( 1
2

+α)+m( 1
2

+β)
+

min {m,n}+ 1

p(1+2γ)+(1+2δ)+n( 1
2

+α)+m( 1
2

+β)

+
min {m,n}+ 1

p(1+2δ)+n( 1
2

+α)+m( 1
2

+β)
+

min {m,n}+ 1

p(1+2γ)+n( 1
2

+α)+m( 1
2

+β)

)
+
∑
m+n
odd

(
−2(min {m,n}+ 1)

p( 1
2

+δ)+n( 1
2

+α)+m( 1
2

+β)
+
−2(min {m,n}+ 1)

p( 1
2

+γ)+n( 1
2

+α)+m( 1
2

+β)

+
−2(min {m,n}+ 1)

p( 1
2

+γ)+2( 1
2

+δ)+n( 1
2

+α)+m( 1
2

+β)
+

−2(min {m,n}+ 1)

p2( 1
2

+γ)+( 1
2

+δ)+n( 1
2

+α)+m( 1
2

+β)

)
+
∑
n

(
4n+ 2

p(1+γ+δ)+n(1+α+β)

)
+
∑
m+n
even
m 6=n

4 (min {m,n}+ 1)

p(1+γ+δ)+n( 1
2

+α)+m( 1
2

+β)

=

∑
m+n
even

min{m,n}+ 1

pn( 1
2

+α)+m( 1
2

+β)

(1 +
1

p1+2γ
+

1

p1+2δ
+

1

p2+2γ+2δ

)

+

∑
m+n
odd

−2(min{m,n}+ 1)

pn( 1
2

+α)+m( 1
2

+β)

×( 1

p
1
2

+γ
+

1

p
1
2

+δ
+

1

p
3
2

+2γ+δ
+

1

p
3
2

+γ+2δ

)

+

∑
m+n
even
m6=n

4 min{m,n}+ 4

pn( 1
2

+α)+m( 1
2

+β)
+
∑
n

4n+ 2

pn(1+α+β)


(

1

p1+γ+δ

)
.

(4.4)
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Since
(4.5)∑

m+n
even

min{m,n}+ 1

pn( 1
2

+α)+m( 1
2

+β)
=

(
1 +

1

p1+2α
+

1

p1+2β
+

2

p1+α+β
+O

(
1

p2

))
,

(4.6)
∑
m+n
odd

−2(min{m,n}+ 1)

pn( 1
2

+α)+m( 1
2

+β)
=

(
−2

p
1
2

+α
+
−2

p
1
2

+β
+O

(
1

p
3
2

))
,

and

∑
m+n
even
m6=n

4 min{m,n}+ 4

pn( 1
2

+α)+m( 1
2

+β)
+
∑
n

4n+ 2

pn(1+α+β)


(

1

p1+γ+δ

)
=

2

p1+γ+δ
+O

(
1

p2

)
,

(4.7)

we conclude that, for p ≡ 1(4), we may write

(4.8) Gp(α, β, γ, δ) = Yp(α, β, γ, δ)×Ap(α, β, γ, δ),

where

Yp(α, β, γ, δ) :=

(
1− 1

p1+α+γ

)(
1− 1

p1+β+γ

)(
1− 1

p1+α+δ

)(
1− 1

p1+β+δ

)
(

1− 1
p1+2α

)(
1− 1

p1+2β

)(
1− 1

p1+α+β

)(
1− 1

p1+γ+δ

)
×

(
1− 1

p1+α+γ

)(
1− 1

p1+β+γ

)(
1− 1

p1+α+δ

)(
1− 1

p1+β+δ

)
(

1− 1
p1+α+β

)(
1− 1

p1+2γ

)(
1− 1

p1+2δ

)(
1− 1

p1+γ+δ

) ,(4.9)

and Ap(α, β, γ, δ) is a function that converges sufficiently rapidly.

Finally, note that

G2(α, β, γ, δ) =
∑
m+n
even

(
δ2(m,n, 0, 0)

2n( 1
2

+α)+m( 1
2

+β)
+

δ2(m,n, 1, 1)

2( 1
2

+γ)+( 1
2

+δ)+n( 1
2

+α)+m( 1
2

+β)

)

+
∑
m+n
odd

(
δ2(m,n, 1, 0)

2( 1
2

+γ)+n( 1
2

+α)+m( 1
2

+β)
+

δ2(m,n, 0, 1)

2( 1
2

+δ)+n( 1
2

+α)+m( 1
2

+β)

)

=

(
1 +

1

21+γ+δ

)∑
m+n
even

(
1

2n( 1
2

+α)+m( 1
2

+β)

)

−
(

1

2
1
2

+γ
+

1

2
1
2

+δ

)∑
m+n
odd

(
1

2n( 1
2

+α)+m( 1
2

+β)

)
.

(4.10)
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We therefore may write

(4.11) G2(α, β, γ, δ) = Y2(α, β, γ, δ)×A2(α, β, γ, δ),

where

Y2(α, β, γ, δ) :=

(
1− 1

21+α+γ

) (
1− 1

21+β+γ

) (
1− 1

21+α+δ

) (
1− 1

21+β+δ

)(
1− 1

21+2α

) (
1− 1

21+2β

) (
1− 1

21+α+β

) (
1− 1

21+γ+δ

)
(4.12)

and A2(α, β, γ, δ) := G2(α, β, γ, δ)/Y2(α, β, γ, δ).

4.2. Expanding the Euler Product. Recall that for Re(x) > 0,

ζ(1 + x) =
∏
p

(
1− 1

p1+x

)−1

,(4.13)

and

L(1 + x) =
∏

p≡1(4)

(
1− 1

p1+x

)−1 ∏
p≡3(4)

(
1 +

1

p1+x

)−1

,(4.14)

where L(s) := L(s, χ1). Incorporating the above simplifications, and again

collecting only terms which converge substantially slower that p−3/2, we
arrive at the following conjecture.

Conjecture 4.1. With constraints on α, β, γ, δ as described in (3.6) and
(3.7), we have

∑
k 6=0

∣∣∣∣f̂ ( k

K

) ∣∣∣∣2Lk(1
2 + α)Lk(

1
2 + β)

Lk(
1
2 + γ)Lk(

1
2 + δ)

=
∑
k 6=0

∣∣∣∣f̂ ( k

K

) ∣∣∣∣2(G(α, β, γ, δ)

+
1

1− 2α

( π

2K

)2α
G(−α, β, γ, δ) +

1

1− 2β

( π

2K

)2β
G(α,−β, γ, δ)

+

(
1

1− 2(α+ β)

)( π

2K

)2(α+β)
G(−α,−β, γ, δ)

)
+O

(
K

1
2

+ε
)
,

(4.15)

where

G(α, β, γ, δ) :=
∏
p

Gp(α, β, γ, δ)(4.16)

= Y (α, β, γ, δ)×A(α, β, γ, δ),(4.17)
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Y (α, β, γ, δ) :=
∏
p

Yp(α, β, γ, δ)

=
ζ(1 + 2α)ζ(1 + 2β)ζ(1 + γ + δ)ζ(1 + α+ β)

ζ(1 + α+ γ)ζ(1 + β + γ)ζ(1 + β + δ)ζ(1 + α+ δ)

× L(1 + 2γ)L(1 + 2δ)L(1 + γ + δ)L(1 + α+ β)

L(1 + α+ γ)L(1 + β + γ)L(1 + β + δ)L(1 + α+ δ)
,

(4.18)

and A(α, β, γ, δ) :=
∏
pAp(α, β, γ, δ) is an Euler product that converges for

sufficiently small fixed values of Re(α),Re(β),Re(γ),Re(δ).

In further calculations, it will be helpful to define

(4.19) Y(α, β, γ, δ) :=
ζ(1 + 2α)ζ(1 + 2β)ζ(1 + γ + δ)ζ(1 + α+ β)

ζ(1 + α+ γ)ζ(1 + β + γ)ζ(1 + β + δ)ζ(1 + α+ δ)
,

as well as

(4.20) A(α, β, γ, δ) :=
G(α, β, γ, δ)

Y(α, β, γ, δ)
.

It will also be necessary to make use of the following lemma.

Lemma 4.2. We have that

A(α, β, α, β) = A(α, β, α, β) = 1.(4.21)

Proof. Since Y (α, β, α, β) = Y(α, β, α, β) = 1, it suffices to show that
G(α, β, α, β) = 1. Note that G2(α, β, α, β) = 1, and upon writing

(4.22)
∑
m,n

1

pn(1+2α)+m(1+2β)
=

(
1− 1

p1+2β

)−1(
1− 1

p1+2α

)−1

,

we similarly obtain that Gp(α, β, α, β) = 1 whenever p ≡ 3(4). Moreover,
we rewrite∑

m+n
even

min(m,n) + 1

pm( 1
2

+α)+n( 1
2

+β)
=

p2(1+α+β)(1 + p1+α+β)

(p1+2α − 1)(p1+α+β − 1)(p1+2β − 1)
,(4.23)

and

(4.24)
∑
m+n
odd

−2(min(m,n) + 1)

pm( 1
2

+α)+n( 1
2

+β)
=

−2p
5
2

+2α+2β(pα + pβ)

(p1+2α − 1)(p1+α+β − 1)(p1+2β − 1)
,
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as well as ∑
m6=n

m+n even

4 ·min(m,n) + 4

pm( 1
2

+α)+n( 1
2

+β)
=

4p2(1+α+β)(1 + p1+α+β)

(p1+2α − 1)(p1+α+β − 1)(p1+2β − 1)

− 4p2(1+α+β)

(p1+α+β − 1)2
,

(4.25)

and

(4.26)
∞∑
n=0

4n+ 2

pn(1+α+β)
=

2p1+α+β(1 + p1+α+β)

(p1+α+β − 1)2
,

so that for p ≡ 1(4),

Gp(α, β, γ, δ) =

(
p2(1+α+β)(1 + p1+α+β)

(p1+2α − 1)(p1+α+β − 1)(p1+2β − 1)

)

×
(

1 +
1

p1+2γ
+

1

p1+2δ
+

1

p2+2γ+2δ

)
−

(
2p

5
2

+2α+2β(pα + pβ)

(p1+2α − 1)(p1+α+β − 1)(p1+2β − 1)

)

×

(
1

p
1
2

+γ
+

1

p
1
2

+δ
+

1

p
3
2

+2γ+δ
+

1

p
3
2

+γ+2δ

)
+

(
2p1+α+β(1 + p1+α+β)

(p1+α+β − 1)2

+
4p2+2α+2β(1 + p1+α+β)

(p1+2α − 1)(p1+α+β − 1)(p1+2β − 1)
− 4p2+2α+2β

(p1+α+β − 1)2

)(
1

p1+γ+δ

)
.

Upon setting α = γ and β = δ, we then have Gp(α, β, α, β) = 1. The lemma
then follows from (4.16). �

Lemma 4.3. Define Aβ(α) := A(−α,−β, α, β). Then

d

dα
Aβ(α)

∣∣∣∣
α=−β

= −2
∑
p≡3(4)

(
p2+8β + p2 − 2p4β

)
log p

p2+8β + p2 − p4β − p4+4β
.(4.27)

Proof. Write

Aβ(α) =
∏
p

pβ(α),(4.28)

where

(4.29) pβ(α) := Ap(−α,−β, α, β)

are the local factors of Aβ(α), and note that pβ(−β) = 1 at each prime p.
By the product rule,

(4.30)
d

dα
Aβ =

∑
q

d

dα
pβ
∏
p 6=q

qβ.
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Note that
(4.31)

pβ(α) =



2−α−β(−2+2α+β)(−1+21+α+β)(2−21+2α+2α+β−21+2β+21+2α+2β)(−2+22α)(−2+22β)

(21/2−2α)(21/2+2α)(21/2−2β)(21+α−2β)(21/2+2β)(2α−21+β)
if p = 2

− 1
(−1+p)4(p1+α−pβ)2(pα−p1+β)2

p−4(α+β)(−1 + p1+2α)(−p+ pα+β) if p ≡ 1(4)

×(−1 + p1+α+β)2(−1 + p1+2β)(p− 2p1+2α + p2+2α + pα+β − 2p3(α+β)

−4p1+α+β − 4p2(1+α+β) + 2p2+α+β + 3p1+3α+β − 2p2+3α+β − 2p1+2β

+p2+2β + 4p1+2α+2β + p3+2α+2β + 3p1+α+3β − 2p2+α+3β + p2+3α+3β)
p−4(α+β)(−1+p1+2α)(1+p1+2α)(−p+pα+β)(p+pα+β)(−1+p1+α+β)

(−1+p2)2(p2+4α−p2(α+β)−p2(2+α+β)+p2+4β ) if p ≡ 3(4),

×(1 + p1+α+β)(−1 + p1+2β)(1 + p1+2β)

so that

(4.32)
d

dα
pβ(α)

∣∣∣∣
α=−β

=


0 if p = 2
0 if p ≡ 1(4)

−2
(p2+8β+p2−2p4β) log p

p2+8β+p2−p4β−p4+4β if p ≡ 3(4),

from which the result follows. �

5. The Ratios Conjecture Prediction for Var(ψK,X):

Let FK(θ) be as in (1.1). By the Fourier expansion of FK , we may write

ψK,X(θ) =
∑
a

Φ

(
N(a)

X

)
Λ(a)FK(θa − θ)

=
∑
a

Φ

(
N(a)

X

)
Λ(a)

∑
k∈Z

1

K
f̂

(
k

K

)
e4ki(θa−θ).

(5.1)

Since the mean value is given by the zero mode k = 0, the variance may be
computed as

Var(ψK,X) =
2

π

∫ π
2

0

∣∣∣∣ψK,X(θ)− 〈ψK,X〉
∣∣∣∣2dθ

=
2

π

∫ π
2

0

∣∣∣∣∑
k 6=0

e−i4kθ
1

K
f̂

(
k

K

)∑
a

Φ

(
N(a)

X

)
Λ(a)Ξk(a)

∣∣∣∣2dθ.

(5.2)

By applying the Mellin Inversion Formula

(5.3) Φ(x) =
1

2πi

∫
(2)

Φ̃(s)x−sds,

we obtain∑
a

Λ(a)Ξk(a)Φ

(
N(a)

X

)
=

1

2πi

∫
(2)

∑
a

Λ(a)Ξk(a)
Xs

N(a)s
Φ̃(s)ds

=
1

2πi

∫
(2)
−
L′k
Lk

(s)Φ̃(s)Xsds.

(5.4)
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Inserting this into (5.2), we find that

Var(ψK,X) =
2

π

∫ π
2

0

∣∣∣∣∑
k 6=0

e−i4kθ
1

K
f̂

(
k

K

)∑
a

Λ(a)Ξk(a)Φ

(
N(a)

X

) ∣∣∣∣2dθ
=

2

π

∫ π
2

0

∣∣∣∣∑
k 6=0

e−i4kθ
1

K
f̂

(
k

K

)
i

2π

∫
(2)

L′k
Lk

(s)Φ̃(s)Xsds

∣∣∣∣2dθ.

(5.5)

Upon recalling that∫ π
2

0
e4i(k′−k)θdθ =

{
0 if k 6= k′
π
2 if k = k′,

(5.6)

Var(ψK,X) can be restricted to terms for which the Fourier coefficients are
equal, i.e.,

Var(ψK,X) =
1

4π2K2

∫
(2)

∫
(2)

∑
k 6=0

∣∣∣∣f̂ ( k

K

) ∣∣∣∣2L′kLk (s)
L′k
Lk

(s′)Φ̃(s)Φ̃(s′)XsXs′dsds′

(5.7)

by Fubini’s theorem. Moreover, under GRH,
L′k
Lk

(s) is holomorphic in the

half-plane Re(s) > 1
2 , and thus we may shift the vertical integrals to Re(s) =

1
2 + ε, and Re(s′) = 1

2 + ε′, for any ε, ε′ > 0. Upon making the change of

variables α := s− 1
2 and β := s′ − 1

2 we find that

Var(ψK,X) = −X
1−2λ

4π2

∫
(ε′)

∫
(ε)

∑
k 6=0

∣∣∣∣f̂ ( k

K

) ∣∣∣∣2L′kLk
(

1

2
+ α

)
L′k
Lk

(
1

2
+ β

)

× Φ̃

(
1

2
+ α

)
Φ̃

(
1

2
+ β

)
XβXαdαdβ.

(5.8)

Note by (3.7) that the substitution of the ratios conjecture is only valid
when Im(α), Im(β) �c K

1−c, for small c > 0. If either Im(α) > K1−c or

Im(β) > K1−c, we use the rapid decay of Φ̃, as well as upper bounds on

the growth of
L′k
Lk

within the critical strip, to show that the contribution to

the double integral coming from these tails is bounded by Oc
(
K−1+c

)
. For

Im(α), Im(β) < K1−c, we take the derivative of (3.43) to obtain

∑
k 6=0

∣∣∣∣f̂ ( k

K

) ∣∣∣∣2L′kLk
(

1

2
+ α

)
L′k
Lk

(
1

2
+ β

)
=
∑
k 6=0

∣∣∣∣f̂ ( k

K

) ∣∣∣∣2M ′K(α, β) +O
(
K

1
2

+ε
)
,

(5.9)
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where2

M ′K(α, β) :=
∂

∂β

∂

∂α
MK(α, β, γ, δ)

∣∣∣∣∣
(α,β,α,β)

.(5.10)

Plugging (5.9) into (5.8) for Im(α), Im(β) < K1−c, and using a similar argu-
ment as above to bound the tails, we then arrive at the following conjecture:

Conjecture 5.1. We have that

Var(ψK,X) = −Cf
X

K

(
I1 + I2 + I3 + I4

)
+O

(
X−

λ
2

+ε
)
,(5.11)

where

I1 : =

∫
(ε′)

∫
(ε)

∂

∂β

∂

∂α
G(α, β, γ, δ)

∣∣∣∣
(α,β,α,β)

× Φ̃

(
1

2
+ α

)
Φ̃

(
1

2
+ β

)
Xα+βdαdβ,

(5.12)

I2 : =

∫
(ε′)

∫
(ε)

∂

∂β

∂

∂α

(π
2

)2β 1

1− 2β
G(α,−β, γ, δ)

∣∣∣∣
(α,β,α,β)

× Φ̃

(
1

2
+ α

)
Φ̃

(
1

2
+ β

)
XαXβ(1−2λ)dαdβ

(5.13)

I3 : =

∫
(ε′)

∫
(ε)

∂

∂β

∂

∂α

(π
2

)2α 1

1− 2α
G(−α, β, γ, δ)

∣∣∣∣
(α,β,α,β)

× Φ̃

(
1

2
+ α

)
Φ̃

(
1

2
+ β

)
Xα(1−2λ)Xβdαdβ

(5.14)

and

I4 :=

∫
(ε′)

∫
(ε)

∂

∂β

∂

∂α

(
1

1− 2(α+ β)

)(π
2

)2(α+β)
G(−α,−β, γ, δ)

∣∣∣∣
(α,β,α,β)

× Φ̃

(
1

2
+ α

)
Φ̃

(
1

2
+ β

)
Xα(1−2λ)Xβ(1−2λ)dαdβ.

(5.15)

Conjecture 1.2 now follows from Conjecture 5.1 as a consequence of the
following three lemmas:

Lemma 5.2. We have

(5.16) I1 = −(logX)CΦ − C ′Φ − π2Φ̃

(
1

2

)2

+OΦ

(
X−

1
5

)
.

2Here, and elsewhere, we allow for a slight abuse of notation: α and β denote coordi-
nates of MK , as well as coordinates of the point at which the derivative is then evaluated.
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Lemma 5.3. We have

(5.17) I2 + I3 =


OΦ (X−ε) if λ > 1

2π2
(

Φ̃
(

1
2

))2
+OΦ (X−ε) if 1

2 < λ < 1

4π2
(

Φ̃
(

1
2

))2
+OΦ (X−ε) if λ < 1

2 ,

where ε > 0 is a constant (depending on λ).

Lemma 5.4. We have

(5.18) I4 =

{
CΦ(1− 2λ) logX + κ+OΦ (X−ε) if 1

2 < λ
OΦ (X−ε) if 1

2 > λ,

where

(5.19) κ := CΦ

(
log

(
π2

4

)
+ 2

)
+CΦ,ζ−CΦ,L+C ′Φ−π2

(
Φ̃

(
1

2

))2

−A′Φ.

Here ε > 0 is a constant (depending on λ), and CΦ,ζ , CΦ,L, and A′Φ, are as
in (9.25), (9.26), and (9.27), respectively.

Conjecture 1.2 follows upon inserting the results from Lemma 5.2, Lemma
5.3, and Lemma 5.4, into Conjecture 5.1. Note that when λ > 1, Conjecture
5.1 moreover agrees with Theorem 1.1.

6. Auxiliary Lemmas

Before proceeding to the proofs of Lemmas 5.2, 5.3, and 5.4, we will prove
a few auxiliary lemmas that will be used frequently in the rest of the paper.

Lemma 6.1. Let h(α) be holomorphic in Ω :=
{
−1

4 < Re(α) < ε
}

for some
ε > 0, except for possibly at a finite set of poles. Moreover, suppose that
h(α) does not grow too rapidly in Ω, i.e., there exists a fixed d > 0 such that
h(α)� |α|d away from the poles in Ω. Set

(6.1) f(α) := h(α)Φ̃

(
1

2
+ α

)
Xα,

where α, β, and Φ̃ are as above. Then

(6.2)

∫
(ε)
f(α)dα = 2πi ·

∑
k

Res(f, ak) +O
(
X−

1
5

)
,

where Res(f, ak) denotes the residue of f at each pole ak ∈ Ω.

Proof. Consider the contour integral drawn counter-clockwise along the closed
box

(6.3) CT := V1 ∪H1 ∪ V2 ∪H2,
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where 
V1 := [ε− iT, ε+ iT ]
H1 := [ε+ iT,−1

4 + ε+ iT ]
V2 := [−1

4 + ε+ iT,−1
4 + ε− iT ]

H2 := [−1
4 + ε− iT, ε− iT ].

(6.4)

By Cauchy’s residue theorem,

∫
(ε)
f(α) dα = 2πi ·

∑
k

Res(f, ak)− lim
T→∞

(∫
H1∪V2∪H2

f(α)dα

)
.(6.5)

Set α = σ + iT . By the properties of the Mellin transform, we find that for
any fixed A > 0,

(6.6) Φ̃

(
1

2
+ it

)
� min(1, |t|−A).

Since moreover h(α) does not grow too rapidly, we bound∫
H1

f(α)dα =

∫ −1/4+ε

ε
h(σ + iT )Φ̃

(
1

2
+ σ + iT

)
Xσ+iTdσ � Xε

TA
,(6.7)

so that

(6.8) lim
T→∞

∫
H1

f(α)dα = 0,

and similarly

(6.9) lim
T→∞

∫
H2

f(α)dα = 0.

Finally, we bound

lim
T→∞

∫
V2

f(α)dα = −i
∫
R
h

(
−1

4
+ ε+ it

)
Φ̃

(
1

4
+ ε+ it

)
X(− 1

4
+ε+it)dt

�
∫
R

min(1, |t|−A)X−
1
4

+εXitdt� X−
1
5 ,

(6.10)

from which the theorem then follows. �

Lemma 6.2. Let α, β, Φ̃ be as above. Suppose h(α, β) is holomorphic3 in
the region

(6.11) Ω× Ω :=

{
(α, β) : −1

4
< Re(α),Re(β) < ε

}
3A function f : Ω ⊂ C2 7→ C is said to be homolorphic if it is holomorphic in each

variable separately.
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for some ε > 0, and moreover that h(α, β) does not grow too rapidly in
Ω× Ω, i.e., does not grow too rapidly in each variable, separately. Then

(6.12)

∫
(ε′)

Φ̃

(
1

2
+ β

)∫
(ε)
h(α, β)Φ̃

(
1

2
+ α

)
Xα+β dαdβ � X−

2
5 .

Proof. Set

(6.13) fβ(α) := hβ(α)Φ̃

(
1

2
+ α

)
Xα,

where hβ(α) := h(α, β). Since fβ is holomorphic, by an application of
Lemma 6.1 we write

(6.14)

∫
(ε)
fβ(α)dα = Oβ

(
X−

1
5

)
= O

(
g(β) ·X−

1
5

)
,

where g does not grow too rapidly as a function of β. By another application
of Lemma 6.1, it then follows that

∫
(ε′)

Φ̃

(
1

2
+ β

)
Xβ

(∫
(ε)
fβ(α) dα

)
dβ �

∫
(ε′)

g(β)Φ̃

(
1

2
+ β

)
X−

1
5

+β dβ

� X−
2
5 .

(6.15)

�

Lemma 6.3. Let α, β,Φ̃, and fβ be as above. Suppose fβ(α) has a finite
pole at ak(β) with residue Res(fβ, ak(β)). Moreover, suppose that for each

ak(β), Res(fβ, ak(β)) is holomorphic in Ω :=
{
−1

4 < Re(β) < ε
}

for some
ε > 0, and that Res(fβ, ak(β)) does not grow too rapidly in Ω. Then

(6.16)

∫
(ε′)

Φ̃

(
1

2
+ β

)
Xβ

∫
(ε)
fβ(α) dαdβ � X−

1
5 .

Proof. By Lemma 6.1, we write

(6.17)

∫
(ε)
fβ(α)dα = 2πi ·

∑
k

Res(fβ, ak(β)) +O
(
g(β) ·X−

1
5

)
,

where, as in the proof of Lemma 6.2, we explicitly note the dependence of
the error term on β. Applying Lemma 6.2 to the error term in (6.17), we
obtain

∫
(ε′)

Φ̃

(
1

2
+ β

)
Xβ

∫
(ε)
fβ(α) dαdβ

(6.18)

= 2πi ·
∫

(ε′)
Φ̃

(
1

2
+ β

)∑
k

Res(fβ, ak(β))Xβdβ +O
(
X−

2
5

)
,(6.19)



30 RC, YK, JL, SM, AS, SS, EW, EW, JY

and finally by another application of Lemma 6.1,∫
(ε′)

Φ̃

(
1

2
+ β

)∑
k

Res(fβ, ak(β))Xβdβ � X−
1
5 .(6.20)

�

Lemma 6.4. Let CΦ and C ′Φ be as in (1.6) and (1.11), respectively. Then

(6.21) CΦ = −2πi

∫
(ε′)

Φ̃

(
1

2
+ β

)
Φ̃

(
1

2
− β

)
dβ

and

(6.22) C ′Φ = −2πi

∫
(ε′)

Φ̃

(
1

2
+ β

)
Φ̃′
(

1

2
− β

)
dβ.

Proof. Set φ(y) = Φ(ey)ey/2 so that

Φ̃

(
1

2
+ it

)
=

∫ ∞
0

Φ(x)x−
1
2

+itdx =

∫
R
φ(y)eiytdy = φ̂

(
− t

2π

)
,(6.23)

and similarly Φ̃
(

1
2 − it

)
= φ̂

(
t

2π

)
. By shifting the integral to Re(β) = 0 we

obtain

2πi

∫
(ε′)

Φ̃

(
1

2
+ β

)
Φ̃

(
1

2
− β

)
dβ = 2πi

∫
R
φ̂

(
− t

2π

)
φ̂

(
t

2π

)
i dt.

(6.24)

Since φ̂
(
− t

2π

)
= φ̂

(
t

2π

)
, we moreover have that

∫
R
φ̂

(
− t

2π

)
φ̂

(
t

2π

)
idt =

∫
R

∣∣∣∣φ̂(− t

2π

)∣∣∣∣2 idt = 2πi ·
∫
R

∣∣∣φ̂ (x)
∣∣∣2 dx

= 2πi ·
∫ ∞

0
Φ(x)2dx,

(6.25)

i.e.,

(6.26) CΦ = 4π2

∫ ∞
0

Φ(x)2dx = −2πi

∫
(ε′)

Φ̃

(
1

2
+ β

)
Φ̃

(
1

2
− β

)
dβ.

Next, note that

Φ̃′
(

1

2
− β

)
= − d

dβ
Φ̃

(
1

2
− β

)
= − d

dβ

∫ ∞
0

Φ(x)x
1
2
−β−1dx

=

∫ ∞
0

Φ(x)(log x)x−β−
1
2dx.

(6.27)

Upon setting g(y) = y · Φ(ey)ey/2, we write∫ ∞
0

Φ(x)(log x)x−
1
2
−itdx =

∫
R
g(y)e−iytdy = ĝ

(
t

2π

)
,(6.28)
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so that by shifting to the half-line Re(β) = 1/2, it follows that

2πi

∫
(ε′)

Φ̃

(
1

2
+ β

)
Φ̃′
(

1

2
− β

)
dβ = 2πi

∫
R
ĝ

(
t

2π

)
φ̂

(
− t

2π

)
i dt

= (2πi)2 ·
∫
R
ĝ(x)φ̂(x) dx

= −4π2 ·
∫
R
g(x)φ(x) dx

= −4π2 ·
∫ ∞

0
log x · Φ(x)2 dx.

(6.29)

�

7. Proof of Lemma 5.2

In this section we seek to compute

(7.1)

I1 =

∫
(ε′)

∫
(ε)

∂

∂β

∂

∂α
G(α, β, γ, δ)

∣∣∣∣
(α,β,α,β)

Φ̃

(
1

2
+ α

)
Φ̃

(
1

2
+ β

)
Xα+βdαdβ.

Note that

∂

∂α

∂

∂β
G(α, β, γ, δ)

∣∣∣∣
(α,β,α,β)

=
∂

∂α

∂

∂β

(
Y(α, β, γ, δ) · A(α, β, γ, δ)

)∣∣∣∣
(α,β,α,β)

=
ζ ′′

ζ
(1 + α+ β)− ζ ′

ζ
(1 + α+ β)2 +

ζ ′

ζ
(1 + 2α)

ζ ′

ζ
(1 + 2β)

+
ζ ′

ζ
(1 + 2α) · ∂

∂β
A(α, β, γ, δ)

∣∣∣∣
(α,β,α,β)

+
ζ ′

ζ
(1 + 2β) · ∂

∂α
A(α, β, γ, δ)

∣∣∣∣
(α,β,α,β)

+
∂

∂α

∂

∂β
A(α, β, γ, δ)

∣∣∣∣
(α,β,α,β)

,

(7.2)

where we recall that Ã(α, β, α, β) = 1. Since

(7.3) h(α, β) :=
∂

∂α

∂

∂β
A(α, β, γ, δ)

∣∣∣∣
(α,β,α,β)

is holomorphic in Ω×Ω, by Lemma 6.2 we find that the integral correspond-
ing to this term is bounded by O

(
X−2/5

)
. Moreover, by an application of

Lemma 6.3, the integrals corresponding to
(7.4)
ζ ′

ζ
(1+2α)· ∂

∂β
A(α, β, γ, δ)

∣∣∣∣
(α,β,α,β)

and
ζ ′

ζ
(1+2β)· ∂

∂α
A(α, β, γ, δ)

∣∣∣∣
(α,β,α,β)
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are each bounded by O
(
X−1/5

)
. The main contributions to (7.1) thus come

from

(7.5)
ζ ′′

ζ
(1 +α+ β), −ζ

′

ζ
(1 +α+ β)2, and

ζ ′

ζ
(1 + 2α) · ζ

′

ζ
(1 + 2β),

and we now proceed to separately compute each of the three corresponding
integrals.

7.1. Computing ζ′′

ζ (1 + α + β) :. The first double integral we would like
to compute is

I(7.1) :=

∫
(ε′)

∫
(ε)

ζ ′′

ζ
(1 + α+ β)Φ̃

(
1

2
+ α

)
Φ̃

(
1

2
+ β

)
X(α+β) dα dβ

=

∫
(ε′)

Φ̃

(
1

2
+ β

)
Xβ

∫
(ε)
f(7.1)(α) dα dβ,

(7.6)

where

(7.7) f(7.1)(α) :=
ζ ′′

ζ
(1 + α+ β)Φ̃

(
1

2
+ α

)
Xα.

Since f(7.1) has one double pole at α = −β, it follows from Lemma 6.1 that∫
(ε)
f(7.1)(α) dα = 2πi · Res(f(7.1),−β) +O

(
X−

1
5

)
.(7.8)

To compute Res(f(7.1),−β), we split f(7.1)(α) into two parts.

i) First, we expand ζ′′

ζ (1 + α+ β) about the point α = −β, yielding

(7.9)
ζ ′′

ζ
(1 + α+ β) =

2

(α+ β)2
− 2γ0

(α+ β)
+ 2(γ2

0 + γ1) + h.o.t.,

where γi are Stieltjes constants, not to be confused with the variable γ used
previously.

ii) Next, we expand g(α) = Φ̃
(

1
2 + α

)
Xα about the point α = −β. Since

(7.10) g′(α) = Φ̃

(
1

2
+ α

)
(logX)Xα +

d

dα
Φ̃

(
1

2
+ α

)
Xα,

it follows that

g(α) = Φ̃

(
1

2
− β

)
X−β +

(
Φ̃

(
1

2
− β

)
(logX)X−β

+ Φ̃′
(

1

2
− β

)
X−β

)
(α+ β) + h.o.t.

(7.11)

Multiplying the two Taylor expansions above, we find that
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Res(f(7.1),−β) = 2

(
Φ̃

(
1

2
− β

)
(logX) + Φ̃′

(
1

2
− β

)
− γ0Φ̃

(
1

2
− β

))
X−β,

(7.12)

and therefore∫
(ε)
f(7.1)(α) dα = 4πi

(
Φ̃

(
1

2
− β

)
(logX) + Φ̃′

(
1

2
− β

)
− γ0Φ̃

(
1

2
− β

))
X−β

+O
(
X−

1
5

)
.

By an application of Lemma 6.1, it follows that

I(7.1) = 4πi

(
logX

∫
(ε′)

Φ̃

(
1

2
+ β

)
Φ̃

(
1

2
− β

)
dβ

+

∫
(ε′)

Φ̃

(
1

2
+ β

)
Φ̃′
(

1

2
− β

)
dβ − γ0

∫
(ε′)

Φ̃

(
1

2
+ β

)
Φ̃

(
1

2
− β

)
dβ

)
+O

(
X−

2
5

)
,

(7.13)

i.e.,

(7.14) I(7.1) = −2(logX)CΦ − 2C ′Φ + 2γ0CΦ +O
(
X−

2
5

)
.

7.2. Computing − ζ′

ζ (1 + α+ β)2. Next, we are interested in the integral

I(7.2) := −
∫

(ε′)

∫
(ε)

ζ ′

ζ
(1 + α+ β)2 · Φ̃

(
1

2
+ α

)
Φ̃

(
1

2
+ β

)
Xα+β dα dβ

= −
∫

(ε′)
XβΦ̃

(
1

2
+ β

)∫
(ε)
f(7.2)(α) dα dβ,

(7.15)

where

(7.16) f(7.2)(α) :=
ζ ′

ζ
(1 + α+ β)2 · Φ̃

(
1

2
+ α

)
Xα.

Since f(7.2)(α) has a single pole at α = −β, it follows from Lemma 6.1 that

(7.17)

∫
(ε)
f(7.2)(α) dα = 2πi · Res(f(7.2),−β) +O

(
X−

1
5

)
.

To determine the residue of this integral at the point α = −β, we expand
ζ′

ζ (1 + α+ β)2 and g(α) := Φ̃
(

1
2 + α

)
Xα about the point α = −β, yielding

ζ ′

ζ
(1 + α+ β)2 =

1

(α+ β)2
− 2γ0

(α+ β)
+ h.o.t.,(7.18)
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and

g(α) = Φ̃

(
1

2
− β

)
X−β +

(
Φ̃

(
1

2
− β

)
(logX)X−β

+ Φ̃′
(

1

2
− β

)
X−β

)
(α+ β) + h.o.t.,

(7.19)

so that

Res(f(7.2),−β) =

(
Φ̃

(
1

2
− β

)
(logX) + Φ̃′

(
1

2
− β

)
− 2γ0Φ̃

(
1

2
− β

))
X−β.

(7.20)

It follows that∫
(ε)
f(7.2)(α) dα = 2πi

(
Φ̃

(
1

2
− β

)
(logX) + Φ̃′

(
1

2
− β

)
− 2γ0Φ̃

(
1

2
− β

))
X−β +O

(
X−

1
5

)
,

from which we obtain

(7.21) I(7.2) = (logX)CΦ + C ′Φ − 2γ0CΦ +O
(
X−

2
5

)
.

7.3. Computing
(
ζ′

ζ (1 + 2α)
)(

ζ′

ζ (1 + 2β)
)
. Next we are interested in the

integral

I(7.3) :=

∫
(ε′)

∫
(ε)

ζ ′

ζ
(1 + 2α) · ζ

′

ζ
(1 + 2β)Φ̃

(
1

2
+ α

)
Φ̃

(
1

2
+ β

)
Xα+β dα dβ

=

∫
(ε′)

f(7.3)(β) dβ ·
∫

(ε)
f(7.3)(α)dα,

(7.22)

where

(7.23) f(7.3)(α) :=
ζ ′

ζ
(1 + 2α)Φ̃

(
1

2
+ α

)
Xα.

Since

(7.24)
ζ ′

ζ
(1 + 2α) = − 1

2α
+ γ0 + h.o.t.,

f has a simple pole at α = 0 with residue

Res(f(7.3), 0) = lim
α→0

α · f(7.3)(α) = −1

2
Φ̃

(
1

2

)
.(7.25)
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It thus follows from Lemma 6.1 that

(7.26)

∫
(ε)
f(7.3)(α)dα = −πiΦ̃

(
1

2

)
+O

(
X−

1
5

)
,

and similarly

(7.27)

∫
(ε)
f(7.3)(β)dβ = −πiΦ̃

(
1

2

)
+O

(
X−

1
5

)
,

from which we conclude that

(7.28) I(7.3) = −π2

(
Φ̃

(
1

2

))2

+O
(
X−

1
5

)
.

Lemma 5.2 then follows upon combing the results of (7.14), (7.21), and
(7.28).

8. Proof of Lemma 5.3

Next, we consider the quantity

∂

∂α

∂

∂β

(
1

1− 2α

(π
2

)2α
G(−α, β, γ, δ)

)∣∣∣∣∣
(α,β,α,β)

=
ζ(1− 2α)

(1− 2α)

(π
2

)2α
(
A(−α, β, α, β)

(
− ζ ′

ζ
(1 + 2β)− ζ ′

ζ
(1− α+ β) +

ζ ′

ζ
(1 + α+ β)

)
− d

dβ
A(α, β, γ, δ)

∣∣∣∣
(−α,β,α,β)

)
(8.1)

coming from the integral I2, as well as the symmetric quantity

∂

∂α

∂

∂β

(
1

1− 2β

(π
2

)2β
G(α,−β, γ, δ)

)∣∣∣∣
(α,β,α,β)

=
ζ(1− 2β)

(1− 2β)

(π
2

)2β
(
A(α,−β, α, β)

(
− ζ ′

ζ
(1 + 2α)− ζ ′

ζ
(1 + α− β) +

ζ ′

ζ
(1 + α+ β)

)
− ∂

∂α
A(α, β, γ, δ)

∣∣∣∣
(α,−β,α,β)

)
(8.2)

coming from the integral I3. As before, we approach this term by term, and
note that by an application of Lemma 6.3, the integrals over

(8.3)
d

dβ
A(α, β, γ, δ)

∣∣∣∣
(−α,β,α,β)

and
∂

∂α
A(α, β, γ, δ)

∣∣∣∣
(α,−β,α,β)

may be bounded by O
(
X−

1
5

)
. Significant contributions then come from

integration against the following integrands:

i)− ζ′

ζ (1 + 2β) and − ζ′

ζ (1 + 2α),
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ii)− ζ′

ζ (1− α+ β) and − ζ′

ζ (1 + α− β),

iii) 2 · ζ
′

ζ (1 + α+ β).

8.1. Computing − ζ′

ζ (1 + 2β) and − ζ′

ζ (1 + 2α): Combining the discussion

above with (5.1), we seek to compute the following integral:

I(8.1) := −
∫

(ε)

ζ(1− 2α)

(1− 2α)
·
(π

2

)2α
Φ̃

(
1

2
+ α

)
Xα(1−2λ)

(∫
(ε′)

f(8.1)(β)dβ

)
dα,

(8.4)

where

(8.5) f(8.1)(β) := A(−α, β, α, β)
ζ ′

ζ
(1 + 2β)Φ̃

(
1

2
+ β

)
Xβ.

Note that since

(8.6)
ζ ′

ζ
(1 + 2β) = − 1

2β
+ γ0 + h.o.t.,

f(8.1) has a simple pole at β = 0 with residue

Res(f(8.1), 0) = −A(−α, 0, α, 0)
1

2
Φ̃

(
1

2

)
,(8.7)

so that by Lemma 6.1,

(8.8)

∫
(ε′)

f(8.1)(β)dβ = −πiA(−α, 0, α, 0)Φ̃

(
1

2

)
+O

(
X−

1
5

)
.

Inserting this back into the outer integral, we find that

I(8.1) = πiΦ̃

(
1

2

)∫
(ε)
f ′(8.1)(α) dα+O

(
X−

1
5

)
,(8.9)

where

(8.10) f ′(8.1)(α) := A(−α, 0, α, 0)
(π

2

)2α
Xα(1−2λ) ζ(1− 2α)

(1− 2α)
Φ̃

(
1

2
+ α

)
.
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If λ > 1
2 , we shift to the vertical line Re(α) = 1/5, so that

∫
(ε)
f ′(8.1)(α) dα = i

∫
R
A
(
−1

5
− it, 0, 1

5
+ it, 0

)(
π2X1−2λ

4

) 1
5

+it

×
ζ(3

5 − 2it)

(3
5 − 2it)

Φ̃

(
7

10
+ it

)
dt

= i

(
π2X1−2λ

4

) 1
5
∫
R
A
(
−1

5
− it, 0, 1

5
+ it, 0

)(
π2X1−2λ

4

)it
×
ζ
(

3
5 − 2it

)(
3
5 − 2it

) Φ̃

(
7

10
+ it

)
dt.

(8.11)

Since the integrand decays rapidly as a function of t, the integral is bounded
absolutely by a constant that is independent of λ. It follows that for any
fixed λ > 1

2 ,

(8.12) I(8.1) � X( 1
5)(1−2λ).

If λ < 1
2 we shift to the vertical line Re(α) = −1/5, pick up a residue at

α = 0, and bound the remaining contour by O
(
X(− 1

5)(1−2λ)
)

. Since

(8.13) ζ(1− 2α) = − 1

2α
+ γ0 + h.o.t.,

the residue is given by

Res(f ′(8.1), 0) = −1

2
Φ̃

(
1

2

)
,(8.14)

where we make use of Lemma 4.2. Since

(8.15) 2πi · −1

2
Φ̃

(
1

2

)
πiΦ̃

(
1

2

)
= π2

(
Φ̃

(
1

2

))2

,

it follows that

(8.16) I(8.1) =

 π2
(

Φ̃
(

1
2

))2
+O

(
X(− 1

5)(1−2λ)
)

if λ < 1
2

O
(
X(− 1

5)(2λ−1)
)

if λ > 1
2 .

Upon including the contribution from the integral over − ζ′

ζ (1 + 2α) coming

from the third piece of the Ratios Conjecture, we conclude that the combined
contribution from these two symmetric pieces together is equal to

(8.17) 2 · I(8.1) =

 2π2
(

Φ̃
(

1
2

))2
+O

(
X(− 1

5)(1−2λ)
)

if λ < 1
2

O
(
X(− 1

5)(2λ−1)
)

if λ > 1
2 .
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8.2. Computing − ζ′

ζ (1 − α + β) and − ζ′

ζ (1 + α − β). In this section we

assume that 0 < Re(α) < Re(β) = ε′. The integral that we are interested in
computing is

I(8.2) := −
∫

(ε)

ζ(1− 2α)

(1− 2α)
Φ̃

(
1

2
+ α

)(π
2

)2α
Xα(1−2λ)

(∫
(ε′)

f(8.2)(β) dβ

)
dα,

(8.18)

where

(8.19) f(8.2)(β) = A(−α, β, α, β)
ζ ′

ζ
(1− α+ β)Φ̃

(
1

2
+ β

)
Xβ.

Recalling that

(8.20)
ζ ′

ζ
(1− α+ β) =

1

α− β
+ γ0 + h.o.t.,

we find that f(8.2) has a simple pole at α = β. Under the assumption that
0 < Re(α) < Re(β) = ε′, this pole is picked up upon shifting the contour to
the line Re(α) = −1/5, and the residue is

Res(f(8.2), α) = −A(−α, α, α, α)Φ̃

(
1

2
+ α

)
Xα.(8.21)

It follows that

I(8.2) = −
∫

(ε)

ζ(1− 2α)

(1− 2α)
Φ̃

(
1

2
+ α

)(π
2

)2α
Xα(1−2λ)

(
− 2πi · Res(f(8.2), α) +O

(
X−

1
5

))
dα

= 2πi

∫
(ε)
f ′(8.2)(α) dα+O

(
X−

1
5

)
,

(8.22)

where
(8.23)

f ′(8.2)(α) = A(−α, α, α, α)
ζ(1− 2α)

(1− 2α)

(π
2

)2α
X2α(1−λ)Φ̃

(
1

2
+ α

)
Φ̃

(
1

2
+ α

)
.

If λ > 1, we shift to the vertical line Re(α) = 1/5, and bound∫
(ε)
f ′(8.2)(α) dα =

(
X( 1

5)(2−2λ)
)
,(8.24)

while if λ < 1, we shift to the vertical line Re(α) = −1
5 , pick up a pole at

α = 0, and bound the remaining contour by O
(
X(−1/5)(2−2λ)

)
. Since

Res(f ′(8.2), 0) = −1

2
Φ̃

(
1

2

)
Φ̃

(
1

2

)
,(8.25)

we conclude that
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(8.26) I(8.2) =

 2π2
(

Φ̃
(

1
2

))2
+O

(
X(− 2

5)(1−λ)
)

if λ < 1

O
(
X(− 2

5)(λ−1)
)

if λ > 1.

Lastly, we consider the integral

I(8.2,sym) := −
∫

(ε′)

ζ(1− 2β)

(1− 2β)
Φ̃

(
1

2
+ β

)(π
2

)2β
Xβ(1−2λ)

(∫
(ε)
f(8.2,sym)(β) dα

)
dβ,

(8.27)

where

(8.28) f(8.2,sym)(β) = A(α,−β, α, β)
ζ ′

ζ
(1 + α− β)Φ̃

(
1

2
+ α

)
Xα,

which is the symmetry quantity corresponding to I(8.2,sym) coming from (8.2)
above. Under the assumption that 0 < Re(α) < Re(β), the inner integral is
holomorphic in the region −1

5 < Re(α) < ε, from which it follows that

(8.29) I(8.2,sym) = O
(
X−

1
5

)
.

Note that had we instead assumed 0 < Re(β) < Re(α) < 1/5, we would
obtain a significant contribution from I(8.2,sym) and a negligible contribution
from I(8.2). In this way, the symmetry between α and β is preserved.

8.3. Computing ζ′

ζ (1 + α+ β). Next, we compute

I(8.3) :=

∫
(ε)

(π
2

)2α ζ(1− 2α)

(1− 2α)
Φ̃

(
1

2
+ α

)
Xα(1−2λ)

(∫
(ε′)

f(8.3)(β)dβ

)
dα,

(8.30)

where

(8.31) f(8.3)(β) = A(−α, β, α, β)
ζ ′

ζ
(1 + α+ β)Φ̃

(
1

2
+ β

)
Xβ.

Since

(8.32)
ζ ′

ζ
(1 + α+ β) = − 1

α+ β
+ γ0 + h.o.t.,

the residue at β = −α is

Res(f(8.3),−α) = −A(−α,−α, α,−α)Φ̃

(
1

2
− α

)
X−α.(8.33)
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It follows that
(8.34)∫

(ε′)
f(8.3)(β)dβ = −2πiA(−α,−α, α,−α)Φ̃

(
1

2
− α

)
X−α +O

(
X−

1
5

)
,

and thus upon shifting the line of integration to Re(α) = 1/5, we conclude
that

I(8.3) =

∫
(ε)

(π
2

)2α ζ(1− 2α)

(1− 2α)
Φ̃

(
1

2
+ α

)
Xα(1−2λ)

(
Res(f(8.3),−α) +O

(
X−

1
5

))
dα

= O
(
X−

2
5
λ
)
.

(8.35)

Lemma 5.3 then follows upon combining the computations in (8.17), (8.26),
(8.29), and (8.35).

9. Proof of Lemma 5.4

Since

∂

∂α

∂

∂β

(
1

1− 2(α+ β)

(π
2

)2(α+β)
G(−α,−β, γ, δ)

)∣∣∣∣
(α,β,α,β)

=

(9.1)

ζ(1− 2α)ζ(1− 2β)

(1− 2(α+ β))

(π
2

)2(α+β)
(
ζ(1− α− β)ζ(1 + α+ β)

ζ(1 + α− β)ζ(1− α+ β)

)
A(−α,−β, α, β),

we write

I4 =

∫
(ε′)

ζ(1− 2β)Φ̃

(
1

2
+ β

)(π
2

)2β
Xβ(1−2λ)

(∫
(ε)
f4(α) dα

)
dβ,(9.2)

where

f4(α) = A(−α,−β, α, β)
(π

2

)2α
Xα(1−2λ) ζ(1− 2α)

(1− 2(α+ β))

×

(
ζ(1− α− β)ζ(1 + α+ β)

ζ(1 + α− β)ζ(1− α+ β)

)
Φ̃

(
1

2
+ α

)
.

(9.3)

Suppose λ > 1/2. We then shift to the vertical line Re(α) = 1/5, so that

∫
(ε)
f4(α) dα = i

(
π2X1−2λ

4

) 1
5
∫
R
A
(
−1

5
− it,−β, 1

5
+ it, β

)(
π2X1−2λ

4

)it
×

ζ(3
5 − 2it)

(3
5 − 2it− 2β)

(
ζ(4

5 − it− β)ζ
(

6
5 + it+ β

)
ζ
(

6
5 + it− β

)
ζ
(

4
5 − it+ β

))Φ̃

(
7

10
+ it

)
dt.

(9.4)
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By the decay properties of Φ, the integral is bounded by a constant (de-
pending on β) that is independent of λ. It follows that

(9.5)

∫
(ε)
f4(α) dα = Oβ

(
X

1
5

(1−2λ)
)

= O
(
g(β) ·X

1
5

(1−2λ)
)
,

where g does not grow too rapidly as a function of β. Inserting this back
into the outer integral, and shifting the line of integration to Re(β) = 1/5,
we obtain

I4 � X
1
5

(1−2λ) ·
∫

(ε′)
g(β) · ζ(1− 2β)Φ̃

(
1

2
+ β

)(π
2

)2β
Xβ(1−2λ)dβ � X

2
5

(1−2λ).

(9.6)

Next, suppose λ < 1/2. We shift the line of integration to Re(α) = −1/5,
and pick up a simple at α = 0, and a double pole at α = −β. By an
application of Lemma 6.1, we then find

(9.7)

∫
(ε)
f4(α)dα = 2πi ·

(
Res(f4, 0) + Res(f4,−β)

)
+O

(
X−

1
5

(1−2λ)
)
.

It remains to compute these two residue contributions.

9.1. Simple Pole at α = 0: Note that f4 has a simple pole at α = 0 with
residue

Res(f4, 0) = −1

2
A(0,−β, 0, β)

1

(1− 2β)
Φ̃

(
1

2

)
,(9.8)

which contributes when λ < 1/2. Inserting this into the outer integral, we
find that

∫
(ε′)

ζ(1− 2β)Φ̃

(
1

2
+ β

)(π
2

)2β
Xβ(1−2λ)

(
−πiA(0,−β, 0, β)

1

(1− 2β)
Φ̃

(
1

2

))
dβ

= −πiΦ̃
(

1

2

)∫
(ε′)

f(9.1)(β)dβ,

(9.9)

where

f(9.1)(β) =
ζ(1− 2β)

(1− 2β)
Φ̃

(
1

2
+ β

)(π
2

)2β
Xβ(1−2λ)A(0,−β, 0, β).(9.10)

The integral in (9.9) has a simple pole at β = 0 with residue

Res(f(9.1), 0) = −1

2
Φ̃

(
1

2

)
,(9.11)

so that the total contribution from this pole is

(9.12) −π2

(
Φ̃

(
1

2

))2

+O
(
X−

1
5

(1−2λ)
)
.
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9.2. Double Pole at α = −β: To compute the residue of f4 at the point
α = −β, we split f4(α) into three components.

i) First, define

(9.13) h(α) := A(−α,−β, α, β)
ζ(1− 2α)

ζ(1 + α− β)ζ(1− α+ β)

Φ̃
(

1
2 + α

)
(1− 2(α+ β))

.

Since h(α) is holomorphic at α = −β, we may expand it as a power series
of the form

h(α) = h(−β) + h(1)(−β)(α+ β) + h.o.t.(9.14)

ii) Next, we expand

(9.15)
(π

2

)2α (
X1−2λ

)α
= eα(log(π

2

4
)+(1−2λ) logX) = eα·C

about the point α = −β, where

(9.16) C := log

(
π2

4

)
+ (1− 2λ) logX.

The expansion is given as

(9.17) eα·C = e−β·C + C · e−β·C(α+ β) + h.o.t.

iii) Finally, we note that
(9.18)

ζ(1−α−β)ζ(1 +α+β) =

(
− 1

α+ β
+ γ0 + h.o.t.

)(
1

α+ β
+ γ0 + h.o.t.

)
.

The total residue is then found to be the full coefficient of (α+ β)−1, i.e.,

Res(f4,−β) = −C · e−β·Ch(−β)− e−β·Ch(1)(−β).(9.19)

We now compute these two contributions separately.

9.2.1. First Piece. The total contribution from the first piece is

− 2πi ·
(

log

(
π2

4

)
+ (1− 2λ) logX

)(π
2

)−2β
X−β(1−2λ) ·

Φ̃
(

1
2 − β

)
ζ(1− 2β)

,

(9.20)

where we note that A(β,−β,−β, β) = 1. Inserting this into the outer inte-
gral of (9.2), we find that the main contribution of this piece is

−2πi

∫
(ε′)

Φ̃

(
1

2
+ β

)
Φ̃

(
1

2
− β

)
·
(

log

(
π2

4

)
+ (1− 2λ) logX

)
dβ,

(9.21)
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i.e., the total contribution is given by

(9.22) CΦ

(
log

(
π2

4

)
+ (1− 2λ) logX

)
+O

(
X−

1
5

(1−2λ)
)
.

9.2.2. Second Piece. One directly computes

h(1)(−β) =
1

ζ(1− 2β)

(
Φ̃′
(

1

2
− β

)
+ Φ̃

(
1

2
− β

)(
2− ζ ′

ζ
(1− 2β)− ζ ′

ζ
(1 + 2β)

+A′β(−β) +
L′

L
(1− 2β) +

L′

L
(1 + 2β)

))
,

(9.23)

upon noting that Aβ(−β) = A(β,−β,−β, β) = 1. Inserting this expression
back into the outer integral of (9.2), we find that the total contribution from
this piece is

(9.24) 2CΦ + CΦ,ζ − CΦ,L + C ′Φ −A′Φ +O
(
X−

1
5

(1−2λ)
)
,

where
(9.25)

CΦ,ζ := 2πi

∫
(ε′)

Φ̃

(
1

2
+ β

)
Φ̃

(
1

2
− β

)(
ζ ′

ζ
(1− 2β) +

ζ ′

ζ
(1 + 2β)

)
dβ,

(9.26)

CΦ,L := 2πi

∫
(ε′)

Φ̃

(
1

2
+ β

)
Φ̃

(
1

2
− β

)(
L′

L
(1 + 2β) +

L′

L
(1− 2β)

)
dβ,

and
(9.27)

A′Φ := −4πi

∫
(ε′)

Φ̃

(
1

2
+ β

)
Φ̃

(
1

2
− β

)( ∑
p≡3(4)
p prime

(
p2+8β + p2 − 2p4β

)
log p

p2+8β + p2 − p4β − p4+4β

)
dβ,

where we have made use of Lemma 4.3. Lemma 5.4 then follows upon
combining the results of (9.12), (9.22), and (9.24).

Appendix A. Obtaining Numerical Evidence for Conjecture 1.2

The data provided in Figure 1 was obtained using the Mathematica code
provided below. Fix X = 109, Φ = 1(0,1], and f = 1[− 1

2
, 1
2

]. The code outputs

Var(ψK,X)/(〈ψK,X〉 logX) as a function of λ := logK/ logX, for values of
λ ranging between 0.1 ≤ λ ≤ 0.7 with step size 0.025. For simplicity, we
ignore the small contributions coming from prime powers, as well as from
the unique prime (1 + i) ⊂ Z[i] lying above 2.
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In[1]:= X = 10^9; (* This size took a long time for Mathematica to run.*)

A = 1; (* We count primes in Z[i] with norm from A to B *)

B = X;

Roundmod[m_, res_, N_] = Ceiling[(m - res)/N]*N + res; (* An

auxiliary function which finds the smallest integer n >= m such

that n=res (mod N). *)

gauss = Take[

Ratios[Flatten[

Table[PowersRepresentations[p, 2, 2], {p,

Select[Range[Roundmod[A, 1, 4], B, 4], PrimeQ]}]]], {1,

-1,

2}];

(* For primes p which are 1 modulo 4 between the specified

ranges A and B, we compute the unique representation p = a^2 + b

^2 for a,b nonnegative integers with a < b. Then we return the

list of numbers b/a *)

gauss2 = Table[N[ArcTan[theta]], {theta, gauss}]; (* Using the

list "gauss" we compute the angles associated to Gaussian primes

(a + bi) lying over a rational prime congruent to 1 modulo 4, for

0 <= a < b. *)

gauss3 = Table[N[ArcTan[theta]], {theta, Table[1/gauss[[i]], {i,

Length[gauss]}]}]; (* Using the list "gauss" we compute the

angles associated to Gaussian primes (a + bi) lying over a

rational prime congruent to 1 modulo 4, for 0 <= b < a. These are

complex conjugates of the primes giving angles in the "gauss2"

list. *)

primes1 = Select[Range[Roundmod[A, 1, 4], B, 4], PrimeQ]; (* We

find the primes which are 1 modulo 4, between the ranges A and B.

*)

primes3 = Select[Range[Roundmod[Sqrt[A], 3, 4], Sqrt[B], 4],

PrimeQ]; (* We find the primes which are 3 modulo 4, between the

ranges A and B. *)

trivial = Table[0., Length[primes3]]; (* The rational primes

which are 3 modulo 4 remain prime in the Gaussian integers, and

have an angle of zero. This list contains one zero for each prime

congruent to 3 modulo 4, between A and B. *)

allAngles = Join[trivial, gauss2, gauss3]; (* This is a list,

with multiplicity, of the angles of Gaussian primes with norm

between A and B. By convention, the angle is in the interval [0,

Pi/2). *)

allPrimes = N[Join[2 Log[primes3], Log[primes1], Log[primes1]]];

(* The elements of this list correspond to Gaussian primes P with

norm between A and B. The Gaussian prime P appears as the number

log(N(P)), which is the von Mangoldt function evaluated at P.

Suppose P lies over a rational prime p. If p is 3 modulo 4 then N

(P) = p^2, and P is the unique Gaussian prime lying over p. If p

is 1 modulo 4, then we have N(P)=p and there is exactly one other

Gaussian prime P’ lying over the same prime p. *)
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anglesWeights = WeightedData[allAngles, allPrimes];

Do[Print[{j,

Divide[Variance[

Last[HistogramList[

anglesWeights, {0, Divide[Pi, 2],

Divide[Pi, 2 Round[X^j]]}]]], X^{1 - j}*Log[X]]}], {j,

.1,

.7, .025}] (* This outputs pairs {lambda, Var(psi_{K,X})/(<psi_

{K,X}> log(X))} for .1 <= lambda <= .7, with step size .025 for

lambda.*)

The following is used to compute a numerical approximation for CΦ,ζ , when
Φ = 1(0,1]:

In[2]:= << NumericalCalculus‘ (* imports a package that allows us to take

numerical limits and derivatives *)

PhiTilde[s_] := (1/s) (* Mellin transform of Phi. *)

PhiTildeProduct[t_] := PhiTilde[1/2 + I*t]*PhiTilde[1/2 - I*t]

ZetaPrime[s_] := ND[Zeta[t], t, s] (* Using Mathematica’s in-

built Zeta function. We take a derivative *)

2*Pi*I*(I*

NIntegrate[

PhiTildeProduct[t]*(ZetaPrime[1 + .2 + 2*I*t]/Zeta[1 + .2 +

2*I*t] +

ZetaPrime[1 - .2 - 2*I*t]/Zeta[1 - .2 - 2*I*t]), {t, -25,

25}])

The following is used to compute a numerical approximation for CΦ,L, when
Φ = 1(0,1]:

In[3]:= << NumericalCalculus‘ (* imports a package that allows us to take

numerical limits and derivatives *)

PhiTilde[s_] := (1/s) (* Mellin transform of Phi. *)

PhiTildeProduct[t_] := PhiTilde[1/2 + I*t]*PhiTilde[1/2 - I*t]

L[s_] := N[DirichletL[4, 2, s]] (* This is the Dirichlet L-

function for the non-trivial character modulo 4. *)

LPrime[s_] := ND[L[t], t, s] (* Takes a derivative of the L-

function. *)

-2*Pi*I*(I*

NIntegrate[

PhiTildeProduct[t]*(LPrime[1 + .2 + 2*I*t]/L[1 + .2 + 2*I*t]

+

LPrime[1 - .2 - 2*I*t]/L[1 - .2 - 2*I*t]), {t, -25, 25}])

The following is used to compute a numerical approximation for A′Φ, when
Φ = 1(0,1]:

In[4]:= h[_, p_] =
(p^2 - 2 p^(4 ) + p^(2 + 8 )) Log[p]

p^2 - p^(4 ) - p^(4 + 4 ) + p^(2 + 8 )

In[5]:= PhiTilde[s_] := (1/s) (* Mellin transform of Phi. *)

PhiTildeProduct[t_] := PhiTilde[1/2 + I*t]*PhiTilde[1/2 - I*t]

qn[p_] = NIntegrate[h[I*t, p]*PhiTildeProduct[t], {t, 0, Infinity

}]

primes3 = Select[Range[3, 1000, 4], PrimeQ]; (* Selects the

primes congruent to 3 modulo 4 which are less than 1000. *)
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output = 0;

For[i = 1, i <= Length[primes3], i++,

output += 2*qn[primes3[[i]]]]

Print["Range is ", j, ". Integral is ", output]
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