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Abstract. The theory of monstrous moonshine asserts that the coefficients of Hauptmo-
duln, including the j-function, coincide precisely with the graded characters of the monster
module, an infinite-dimensional graded representation of the monster group. On the other
hand, Lehner and Atkin proved that the coefficients of the j-function satisfy congruences
modulo pn for p ∈ {2, 3, 5, 7, 11}, which led to the theory of p-adic modular forms. We
combine these two aspects of the j-function to give a general theory of congruences modulo
powers of primes satisfied by the Hauptmoduln appearing in monstrous moonshine. We
prove that many of these Hauptmoduln satisfy such congruences, and we exhibit a rela-
tionship between these congruences and the group structure of the monster. We also find
a distinguished class of subgroups of the monster with graded characters satisfying such
congruences.
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1 Introduction and statements of results

The theory of monstrous moonshine arose from the remarkable observation of McKay and
Thompson [41] that

196884 = 1 + 196883

and its generalizations, including

21493760 = 1 + 196883 + 21296876,

864299970 = 2× 1 + 2× 196883 + 21296876 + 842609326,

20245856256 = 2× 1 + 3× 196883 + 2× 21296876 + 842609326 + 19360062527.

Here, the left-hand sides of the equations are the coefficients of the normalized modular j-
function

J(τ) = j(τ)− 744 = q−1 + 196884q + 21493760q2 + · · · , where q = e2πiτ ,

and the right-hand sides are simple sums involving the dimensions of the irreducible represen-
tations of the monster group M:

1, 196883, 21296876, 842609326, 19360062527, . . . .

This paper is a contribution to the Special Issue on Moonshine and String Theory. The full collection is
available at https://www.emis.de/journals/SIGMA/moonshine.html
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2 R.C. Chen, S. Marks and M. Tyler

Thompson conjectured [40] that these identities could be explained by the existence of an infinite-
dimensional graded monster module

V \ =
∞⊕

n=−1

V \
n

such that the graded dimension is given by J . More generally, the graded-trace functions

Tg(τ) =

∞∑
n=−1

Tr
(
g|V \

n

)
qn

for the action of M on V \ are known as the McKay–Thompson series and depend only on the
conjugacy class of g ∈ M. As part of their famous monstrous moonshine conjectures, Conway
and Norton computed for each monster conjugacy class g a genus zero group Γg ≤ GL+

2 (R) on
which they conjectured Tg was a normalized Hauptmodul [10]. That is, each Tg was conjectured
to be the unique generator TΓg of the function field of the genus zero curve Γg\H∗ having q-
expansion of the form q−1+O(q) at∞. Since all of the Hautpmoduln appearing in this paper will
be normalized (meaning that they are bounded away from ∞ and have q-expansion q−1 +O(q)
at ∞), we will henceforth omit the word “normalized” and refer to such functions simply as
Hautpmoduln. Frenkel–Lepowsky–Meurman [18, 19] constructed V \ with the correct graded
dimensions, and Borcherds [4] proved that the McKay–Thompson series were Hauptmoduln for
the Γg given by Conway–Norton. After the proof of monstrous moonshine, different incarnations
of moonshine were shown for other finite groups, such as the largest Mathieu group M24 [20],
and later the other 22 groups appearing in umbral moonshine [14]. There is also a notion of
generalized moonshine, conjectured by Norton [33] and recently proved by Carnahan [8].

Thirty years before the observation of McKay and Thompson, Lehner [31, 32] and Atkin [2]
proved that the Fourier expansion of J(τ) = q−1 +

∑
c(n)qn satisfies the following congruences

for all positive α:

c(2αn) ≡ 0
(
mod 23α+8

)
,

c(3αn) ≡ 0
(
mod 32α+3

)
,

c(5αn) ≡ 0
(
mod 5α+1

)
,

c(7αn) ≡ 0 (mod 7α) ,

c(11αn) ≡ 0 (mod 11α) . (1.1)

Viewed another way, these identities state that J |Unp uniformly converges to zero p-adically as
n→∞, where Up is the operator defined on q-expansions by(∑

a(n)qn
)
|Up =

∑
a(pn)qn.

Such congruences led Serre, Katz, and others to develop a robust and fruitful theory of p-adic
modular forms [7, 22, 28, 29, 37].

Given the deep connections between J and the monster, one might wonder whether these
p-adic properties of J are special cases of a more general p-adic phenomenon taking place among
the Hauptmoduln appearing in monstrous moonshine. To make this more precise, given a prime p
and a modular function f , we say that f is p-adically annihilated if the q-series f |Unp uniformly
converges to 0 in the p-adic limit as n → ∞. Given that J is p-adically annihilated for p ∈
{2, 3, 5, 7, 11}, we can then ask if other Hauptmoduln appearing in monstrous moonshine are as
well.

There is some literature studying coefficient congruences of a related nature. The papers
[1, 26] discuss Hauptmoduln on Γ0(N), and [40] discusses other coefficient congruences involving
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Figure 1.1. Conjugacy classes with 2-adically annihilated Hauptmoduln and their power maps.

Hauptmoduln. However, there has not been a systematic study of p-adic annihilation for all of
the monstrous moonshine Hauptmoduln.

Our first main result is that p-adic annihilation is actually quite common among the Haupt-
moduln of monstrous moonshine. In fact, out of the 171 Hauptmoduln in monstrous moonshine,
we will show that 97 have p-adic annihilation for some prime p.

Theorem 1.1. For primes p ∈ {2, 3, 5, 7, 11}, the Hauptmoduln T corresponding to the genus
zero groups of monstrous moonshine appearing in Table 4.1 are p-adically annihilated.

We further conjecture that Table 4.1 gives all the Hauptmoduln appearing in monstrous
moonshine that are p-adically annihilated for any prime p (see Conjecture 4.2).

Once Theorem 1.1 has established a class of Hauptmoduln coming from monstrous moonshine
with p-adic annihilation, we may next ask whether the structure of the monster group informs
p-adic properties of the Hauptmoduln. Specifically, we are interested in relating the power maps
g 7→ gm of the monster (or equivalently, the corresponding maps of conjugacy classes) to p-adic
annihilation of Hauptmoduln.

Theorem 1.2. Let Tg be the Hauptmodul of a group appearing in Table 4.1, so that Tg is p-
adically annihilated by Theorem 1.1. Outside of the exceptions discussed in Section 4.4, we also
have that Tgm is p-adically annihilated for any m ∈ N.

Although Theorem 1.2 follows from Theorem 1.1, we will prove the two theorems in tandem,
relying on the structure provided by Theorem 1.2 to make Theorem 1.1 easier to prove. As
an illustration of Theorem 1.2, see Fig. 1.1, which shows conjugacy classes with Hauptmoduln
that are 2-adically annihilated and the power maps between them. For a full explanation of the
notation used in this figure, and the corresponding figures for p = 3, 5, 7, 11, see Appendix B.
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Finally, we consider which finite groups have infinite-dimensional representations with similar
p-adic properties. We define a moonshine module for a finite group G to be a graded G-module
V =

⊕∞
n=−1 Vn such that for each g ∈ G the graded trace Tg =

∑
Tr(g|Vn)qn associated to

the action of g on V is the Hauptmodul of an order ord(g) conjugacy class of the monster. We
also require that the power maps of G interact with the Hauptmoduln in a way that mimics
what occurs in monstrous moonshine; see Section 5 for the precise condition. For an irreducible
character χ of G, we write mχ(n) for the multiplicity of χ appearing in the character of G acting
on Vn, and define the multiplicity generating function

Mχ(τ) =

∞∑
n=−1

mχ(n)qn.

These seriesMχ were perhaps first studied in [23]. We say that a moonshine module V for G is
a p-adic moonshine module ifMχ is p-adically annihilated for each irreducible character χ. We
may then ask various questions about finite groups with p-adic moonshine modules, such as the
number of such groups and which primes may divide their orders. In Section 5 we address these
questions and give examples of groups with p-adic moonshine modules. In particular, we find
that the groups in Table 1.2 have p-adic moonshine for the listed p in a slightly more general
sense explained in Section 5.3. These groups arise as the centralizers of certain commuting pairs
of elements of the monster in the conjugacy class pA. For other instances of moonshine modules
for centralizers of elements of the class pA, see Ryba’s modular moonshine conjectures [35],
which were proved by Borcherds and Ryba [5, 6].

p 2 3 5 7 11

C
(
pA2

)
22 · 2E6(2) 32 ×O+

8 (3) 52 × U3(5) 72 × L2(7) 112

#C
(
pA2

)
238·39·52·72·11·13·17·19 212·314·52·7·13 24·32·55·7 23·3·73 112

Table 1.2. Subgroups of the monster with weakly p-adic moonshine.

Before proceeding, we outline the structure of this paper. We begin in Section 2 by proving
technical lemmas that will be useful later in the paper. In Section 3, we extend Serre’s theory
of p-adic modular forms such that it becomes applicable to the groups appearing in monstrous
moonshine, and we begin to see p-adic properties of Hauptmoduln. In Section 4, we prove
Theorems 1.1 and 1.2 using both the theory of Section 3 and the interplay between power
maps and p-adic properties. We conclude in Section 5 by considering finite groups with p-adic
moonshine modules, and showing that only finitely many such groups exist. We also discuss
examples of groups with p-adic moonshine, including those in Table 1.2.

2 Preliminaries

In this section, we collect technical details and definitions that will be used later. We first
describe the types of groups Γ whose Hauptmoduln will be studied. We then discuss various
properties of operators on spaces of modular forms, most importantly the Up operator and the
Atkin–Lehner involutions. We also give descriptions of which cusps a Hauptmodul may have
poles at once Up is applied to it, and we give a modular form g with zeros at all such cusps.
Finally, we discuss the trace of a modular form, which transforms modular forms on some Γ into
modular forms on some Γ′ ≥ Γ. These facts will ultimately be used to interpret Hauptmoduln
as p-adic modular forms in Section 3.
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2.1 n|h-type groups

Monstrous moonshine associates to each g ∈ M a Hauptmodul Tg for some genus zero group
Γg ≤ GL2(R)+. This means that Γg\H∗ is a genus zero curve and that Tg is a generator for the
function field such that Tg is bounded away from the cusp ∞; moreover the q-expansion of Tg
at infinity begins Tg = q−1 + O(q). Conway and Norton described the groups Γg in [10], all of
which take on a particular form which we reproduce here.

First we describe the normalizer of Γ0(N) in PSL2(R). Let h be the largest integer such that
h2|N and h|24, and set n = N/h. The normalizer of Γ0(N) is given by

⋃
e‖n/hwe where we is

the set of all matrices A =
(
ae b/h
cn de

)
such that a, b, c, d ∈ Z and detA = e. Here the notation

x‖y means that x exactly divides y, i.e., that x|y and gcd(x, y/x) = 1. Given integers e1, e2 we
set e1 ∗ e2 = e1e2

gcd(e1,e2)2 , and under ∗ the set of exact divisors of any integer N forms the abelian

group (Z/2Z)n where n is the number of primes dividing N .
More generally, a class of subgroups called n|h-type groups is defined as follows. Let n be

any positive integer and let h| gcd(n, 24). Set N = nh and we as above, for e‖n/h. We define
the group Γ0(n|h) = w1. We will often abuse notation and write we for any element of we, and
we see that we1we2 = we1∗e2 . Since h|24 we have that m2 ≡ 1 (mod h) for all m coprime to h.
For a subgroup {1, e1, . . . , en} of the group of exact divisors of n/h, we then define

Γ0(n|h)+e1, e2, . . . , en = 〈Γ0(n|h), we1 , we2 , . . . , wen〉 = w1 ∪ we1 ∪ we2 ∪ · · · ∪ wen .

A group of this form is called an n|h-type group.
Setting N = nh, the group Γ0(n|h)+e1, . . . , en normalizes both Γ0(n|h) and Γ0(N), and

the wei are cosets of Γ0(n|h). When h = 1 we have Γ0(n|1) = Γ0(N) and we denote the matrix

we =

(
ae b
cN de

)
by We. The matrices We for e‖N are called Atkin–Lehner involutions. Given an Atkin–Lehner
involution WE on Γ0(N), we can interpret this as an element of Γ0(n|h) via

WE =

(
aE b
cN dE

)
=

(
aE/hE b/hE
cN/hE dE/hE

)
= we,

where hE is the largest divisor of h with h2
E |E and e = E/h2

E . In fact, setting

AL(Γ) = {e‖nh : We ∈ Γ and every prime dividing e also divides n/h}

we have that this association gives a bijection

AL(Γ)←→ {e : we ⊂ Γ}.

For example, letting Γ = Γ0(8|2)+4 we have

AL(Γ) = {1, 16} ←→ {1, 4} = {e : we ⊂ Γ}.

When dealing with n|h-type groups, it is standard to simplify notation in the following ways.
When h = 1, we simply omit the |h, so that Γ0(n|1) = Γ0(n), and when all e‖n/h are included
in a group, we simply write Γ0(n|h)+ so that Γ0(8|2)+ = Γ0(8|2)+4. We will also sometimes
use the symbol n|h+e, f, . . . to represent the group Γ0(n|h)+e, f, . . . in order to save space,
particularly in tables, so we might write 8|2+ instead of Γ0(8|2)+.

The n|h-type groups appear in monstrous moonshine as eigengroups of the Hauptmoduln.
That is, the Hauptmodul T has an associated group Γ0(n|h)+e, . . . such that for all A in this
group, T (Aτ) = µT (τ) for some hth root of unity µ. Conway–Norton [10] conjectured the
following rule for computing the eigenvalue λ corresponding to an element of Γ0(n|h)+e, . . . :
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(i) λ = 1 for any element of Γ0(N),

(ii) λ = 1 for all We with e ∈ AL(Γ),

(iii) λ = e−2πi/h for the element x =
(

1 1/h
0 1

)
,

(iv) λ = e±2πi/h for the element y = ( 1 0
n 1 ) where the sign is + if and only if τ 7→ −1

Nτ is in
Γ0(n|h)+e, . . . .

This rule’s well-definedness and correctness follow from [17] and the correctness of the monstrous
moonshine conjectures, respectively.

Since the cosets x and y generate Γ0(n|h), we have Γ = 〈x, y,We : e ∈ AL(Γ)〉 for any n|h-
type group Γ. Hence Conway–Norton’s rule uniquely determines a map λ : Γ → µh where µh
denotes the group of hth roots of unity. We always use λ to denote this map.

More generally, let Γ be an n|h-type group. An eigenvalue map is a homomorphism η : Γ→µ2h

such that Γ0(nh) ⊂ ker η. Then we define

Γη = ker η.

When λ is the map given by Conway–Norton’s rule, we have that Γλ is an index h subgroup
of Γ called the fixing group of Γ. However, Conway–Norton’s rule does not always give a well-
defined map, so Γλ does not exist for every n|h-type group Γ; for example Γλ doesn’t exist
when Γ = Γ0(21|3). Ferenbaugh [17, Theorem 2.8] classified the groups Γ for which Conway–
Norton’s rule is consistent, and we call such Γ admissible. There are 213 admissible n|h-type
groups giving genus zero groups, including all 171 groups appearing in monstrous moonshine.
Ferenbaugh also determined the structure of the quotient Γ/Γ0(nh), and therefore also the
structure of Γλ/Γ0(nh). In 174 cases, including the groups of monstrous moonshine, the latter
quotient group has exponent 2; the remaining 3 groups are known as the “ghosts”. For further
discussion of which n|h-type groups appear in monstrous moonshine, see [11].

In the next section we study modular forms on n|h-type groups with given eigenvalue maps,
and the action of the Up operator on such spaces of modular forms.

2.2 Action of Up on Hauptmoduln

Given an n|h-type group Γ with eigenvalue map η : Γ → µ2h, we say a weight k weakly holo-
morphic modular form on Γ0(nh) is on Γ with eigenvalue map η or on (Γ, η) if

f |kγ = η(γ)f for all γ ∈ Γ,

where the weight k slash operator is defined by (2.1) below. By a weakly holomorphic modular
form we mean a meromorphic modular form whose poles are supported on the cusps; on the
other hand a modular form is assumed to be holomorphic everywhere. We write Mk(Γ, η) for
the space of weight k modular forms on Γ with eigenvalue map η. Similarly, we denote the space
of weight k modular forms on Γ0(nh) invariant under all γ ∈ Γη by Mk(Γη). Throughout, all
our weights will be integers.

Fix a prime p. In this section, we study Up applied to Hautpmoduln T , and more generally
weakly holomorphic modular forms on Γη or on Γ with eigenvalue map η. For our results to
extend to n|h-type groups, the results of this section will be stated in the necessary general
language. However the reader looking to use these results for modular forms on Γ0(N)+e, . . .
should remember that this corresponds to taking h = 1 and ignoring eigenvalue maps in the
following results.

Recall that the weight k slash operator |kγ for γ ∈ GL+
2 (R) is defined by

(f |kγ)(τ) = (det γ)k/2(cτ + d)−kf(γτ). (2.1)
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If f is on SL2(Z) then for N ∈ N, we have f(Nτ) on Γ0(N), and for d|N and e‖N ,

f(dτ)|kWe =

(
d ∗ e
d

)k/2
f((d ∗ e)τ). (2.2)

In terms of the slash operator, Up is defined on weight k modular forms by

f |Up = pk/2−1
p−1∑
µ=0

f |kSµ =
1

p

p−1∑
µ=0

f(Sµτ), (2.3)

where Sµ =
(

1 µ
0 p

)
. This operator is independent of k and acts on Fourier expansions by(∑

a(n)qn
)
|Up =

∑
a(pn)qn.

We first recall some basic facts about the Up operator (see [3, Section 2]).

Lemma 2.1. Let f be a weight k meromorphic modular form on Γ0(pαN) where p - N .

(a) If e‖N then f |Up|kWe = f |kWe|Up.
(b) f |Up is modular on Γ0(pβN) where β = max{1, α− 1}.

The following lemma extends these facts from Γ0(N) to n|h-type groups.

Lemma 2.2. Let p - nh be prime, and let f be a weight k meromorphic modular form on
a pαn|h-type group Γ with eigenvalue map η.

(a) Let

x =

(
1 1/h
0 1

)
and y =

(
1 0
pαn 1

)
be the matrices of Section 2.1. Then

f |Up|kxp = f |kx|Up and f |Up|kyp = f |ky|Up.

(b) Let Γ′ be the pβn|h-type group such that β = max{1, α− 1} and e ∈ AL(Γ′) if and only if
e ∈ AL(Γ) and p - e. Let η′ be an be an eigenvalue map on Γ′ such that

η′(xp) = η(x), η′(yp) = η(y), q η′(We) = η(We) for e ∈ AL(Γ′).

Then f |Up is on Γ′ with eigenvalue map η′.

Proof. For 0 ≤ µ ≤ p− 1, let Sµ =
(

1 µ
0 p

)
denote the matrix appearing in the definition (2.3)

of Up. The first identity of part (a) follows from the equation Sµx
p = xSµ. The second identity

follows from the equation

Sµy
p =

(
∗ ∗

pαn(−1 + p2 + pα+1nµ) ∗

)
ySµ, (2.4)

where each ∗ is an integer such that the matrix has determinant 1. Since p - h, we have that
p2 ≡ 1 (mod h) (since h is a divisor of 24), so the matrix appearing in (2.4) is in Γ0(pαnh) and
therefore fixes f .

For part (b), note that since p - h and β ≤ α+ 1, the matrices xp and yp generate Γ0

(
pβn|h

)
.

Thus part (b) follows from part (a) and Lemma 2.1. �
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Let σa : µ 7→ µa be an endomorphism of µ2h. We set ησa = σa ◦η. The preceding lemma says
that if Γ is an pn|h-type group with p - nh then Up is a map Mk(Γ, η)→Mk(Γ, η

σp).
Analogous to the decomposition Mk(Γ1(N)) =

⊕
χMk(Γ0(N), χ) over mod N Dirichlet char-

acters χ, we have the following decomposition of Mk(Γη).

Lemma 2.3. Let Γ be an n|h-type group with eigenvalue map η, such that im η = µh′ ≤ µ2h.
There is a decomposition

Mk(Γη) =
⊕

η′ : Γ→µ2h
ker η′⊇Γη

Mk(Γ, η
′) =

h′−1⊕
a=0

Mk

(
Γ, ησa

)
.

Proof. Since Γ/Γη ∼= im η is finite and abelian, the action of Γ on Mk(Γη) can be simultaneously
diagonalized. �

Let Γ be a pαn|h-type group with eigenvalue map η such that Γη is genus zero and p - nh.
Lemma 2.2 tells us under which group T |Up is modular. We know that T |Up is weakly holo-
morphic, and next characterize the cusps at which it may be unbounded. We first recall that a
set of representatives for the cusps of Γ0(N) is given by{a

b
: b|N, a ∈ Z

}
/∼, where

a

b
∼ c

d
⇐⇒ b = d and a ≡ c (mod gcd(b,N/b)) .

Moreover, if two cusps a
b and c

d (not necessarily representatives of the form above) are equivalent
under Γ0(N) and gcd(a, b) = gcd(c, d) = 1, then gcd(b,N) = gcd(d,N). Both of these facts
follow from [13, Proposition 3.8.3].

In what follows, if Γ ≤ GL+
2 (R) is commensurable with SL2(Z) and s, s′ ∈ P1(Q) are cusps,

then we write

s
Γ∼ s′

to mean that s and s′ are equivalent under Γ. If Γ = Γ0(N) then we simply write s
N∼ s′.

Lemma 2.4. Let p - nh be prime, and let Γ be a pαn|h-type group with eigenvalue map η.
Let Γ′ and η′ be the pβn|h-type group and eigenvalue map defined in Lemma 2.2(b). Suppose f
is a weakly holomorphic modular form on Γ with eigenvalue map η, so that f |Up is on Γ′ with
eigenvalue map η′ by Lemma 2.2.

(a) If f is bounded away from ∞ then the poles of f |Up are supported on the cusps

{∞} ∪
{
s : s

p∼ 0
}

of Γ′η′ .

(b) Suppose that p - e for all e ∈ AL(Γ). If the poles of f are supported on {∞} ∪ {s : s
p∼ 0}

then the same is true of f |Up.
(c) Suppose that α ≥ 2 and p - e for all e ∈ AL(Γ). If f is bounded away from ∞ and f |Up is

bounded at ∞, then f |Up is constant.

Proof. We begin with part (a). Suppose that f is bounded away from∞, and suppose that f |Up
is unbounded at the cusp s. If s

p∼ 0 then we are done. Thus we may assume that s
p∼ ∞. Also,

by (2.3), we must have Sµ · s
Γη∼ ∞ for some µ. Equivalently, s

pαnh∼ S−1
µ A · ∞ for some A that

can be expressed as a word in the matrices

x =

(
1 1/h
0 1

)
, y =

(
1 0
pαn 1

)
, and We ∈ Γη
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of Section 2.1. Since We normalizes Γ0(pαn|h) (see [17, Theorem 2.7]), we may write all of
the We’s on the right of A. By cancelling Wpα ’s, we can moreover demand that p - e for all We

appearing in A, for otherwise we would have A · ∞ p∼ 0 while Sµ · s
p∼ ∞. As in the proof of

Lemma 2.2, we can write S−1
µ A = A′S−1

µ V for some V ∈ Γ0(pαnh), where A′ is obtained from A

by replacing each x with xp and each y with yp. Hence s
pαnh∼ A′S−1

ν · ∞.

If α ≤ 1 and β = 1 then either S−1
ν · ∞

pβnh∼ ∞ or 1
nh . But since A′ · 1

nh

p∼ 0, we must have

S−1
ν · ∞

pβnh∼ ∞. Hence s
pβnh∼ A′ · ∞

Γ′
η′∼ ∞, as desired. The case α ≥ 2 is dealt with similarly,

completing the proof of (a).

A similar argument gives part (b), where we must now use the fact that p - e for e ∈ AL(Γ)
to show that p - e for all We appearing in A. For part (c), one finds that f |Up may only have
a pole at the cusp∞; however, since it does not have a pole here by hypothesis, f |Up is bounded
everywhere and hence constant. �

Remark 2.5. Lemma 2.4(c) delivers a class of Hauptmoduln T for which T |Up = 0. For
the Hauptmoduln from monstrous moonshine to which this applies, this property also follows
from [30, Lemma 3.2]. Furthermore, if Γ is a n|h-type group and η is an eigenvalue map with

η(x) = e2πim/h, then any meromorphic modular form f =
∞∑
n=m

a(n)qn on Γ with eigenvalue map η

has a(n) = 0 if n 6≡ m (mod h), since x sends q 7→ e2πim/hq. In particular, if h ≡ 0 (mod p)
and T is the Hautpmodul on Γλ, then f |Up = 0.

Inspection of Table A.1 shows that the only monster Hauptmoduln with T |Up = 0 are those
with h ≡ 0 (mod p) and those coming from Lemma 2.4(c).

In Section 3 we will need a modular form g on an n|h-type group Γ such that the zeros of g
can cancel the poles of T |Up, whose locations were just determined. We will also need g to have
certain properties modulo p.

To construct g, we will use the modular discriminant ∆(τ) = q
∏
n≥1

(1 − qn)24. If a modular

form f =
∞∑
n=m

a(n)qn has rational coefficients, we set vp(f) = inf
n
vp(an) where vp(an) = sup{r ∈

Z : pr | an}.

Lemma 2.6. Let Γ be a pn|h-type group where p - nh is prime and p - e for all e ∈ AL(Γ). Let
m = # AL(Γ) and set a = 12m(p − 1). Then there is a modular form g on Γ of weight a with
rational coefficients such that

(a) g ≡ 1 (mod p),

(b) vp(g|aWp) ≥ 6m(p+ 1),

(c) As a function on Γ0(pnh), g vanishes to order ≥ m
(
p2 − 1

)
at every cusp equivalent to 0

under Γ0(p).

Specifically, g can be chosen to be∏
e∈AL(Γ)

∆(hτ)p

∆(phτ)

∣∣∣∣
12(p−1)

We.

Proof. First, let

gp(τ) =
∆(hτ)p

∆(phτ)
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and ap = 12(p− 1). Note that gp(τ) is invariant under Γ0(pn|h). For any e ∈ AL(Γ)

(gp|apWe)(τ) =
(∆(hτ)|12We)

p

∆(phτ)|12We
=

(
h ∗ e
h

)6(p−1) ∆((h ∗ e)τ)p

∆(p(h ∗ e)τ)
(2.5)

by (2.2). On the other hand, we see that

(gp|apWpe)(τ) = p6(p+1)

(
h ∗ e
h

)6(p−1) ∆(p(h ∗ e)τ)p

∆((h ∗ e)τ)
. (2.6)

Since ∆ is nonzero on H, (2.5) shows that gp|apWe is a modular form on Γ0(pnh) with ratio-
nal coefficients. Moreover, (2.6) shows that each gp|apWpe for e ∈ AL(Γ) vanishes to order

(h ∗ e)
(
p2 − 1

)
at ∞, so that each gp|apWe vanishes to order ≥ p2 − 1 at the cusps s

p∼ 0.

Since (1−qn)p ≡ 1−qnp (mod p), we see that gp|apWe ≡
(
h∗e
h

)6(p−1) ≡ 1 (mod p). Moreover
vp(gp|apWp) = 6(p+ 1). Thus, we may set

g =
∏

e∈AL(Γ)

gp|apWe,

which clearly satisfies the conditions given. �

Remark 2.7. The function in Lemma 2.6 is chosen for its large order zeroes, in contrast
with symmetrizations of the function g = Ea − pa/2Ea|aWp of [37, Lemma 8]. This will be
computationally useful in Section 4.

We conclude with a few tools for working with q-expansions of mod p modular forms.

Lemma 2.8 (Sturm’s bound [39]). Let f ∈ Mk(Γ0(N)) with integer coefficients an. If p | an
for p ≤ (k/12)[SL2(Z) : Γ0(N)], then p | an for all n .

We will apply Sturm’s bound to weakly holomorphic modular forms after multiplying by
a power of the function from Lemma 2.6. We thus bound the pole orders of T |Up.

Lemma 2.9. Let f be a weakly holomorphic function on X0(pαN), where p - N , and let β =
max{α, 1}. If r is the maximum order of a pole of f on X0(pαN), then the poles of f |Up as
a function on X0

(
pβnh

)
have order at most rp2 when α = 0, and order at most rp otherwise.

Proof. The ramification index of each cusp of X0(pnh) over X0(nh) is a divisor of p. Thus,
for the case α = 0, the maximum order of a pole of f pulled back to X0(pnh) is rp. The Up
operator may be defined via the correspondence(

Γ0(pβnh) ∩ γ−1Γ0(pβnh)γ
)
\H∗

(
γΓ0(pβnh)γ−1 ∩ Γ0(pβnh)

)
\H∗

X0(pβnh) X0(pβnh)

∼

where γ =
(

1 0
0 p

)
. The projections have degree p, so T pulls back to a function on

(
γΓ0

(
pβnh

)
γ−1

∩Γ0(pβnh)
)
\H∗ with poles at most degree rp2 when α = 0 and rp else. The other maps of the

correspondence, which are pullback by the isomorphism and trace down to X0(pβnh), do not
increase the maximum pole order, so the claim follows. �
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2.3 Trace formulas

Following Serre’s idea [37], we will apply the trace to view classical modular forms as p-adic
modular forms of lower level. In this section we discuss a few properties of trace maps.

Suppose Γ and Γ′ are subgroups of GL+
2 (R) with Γ a finite index subgroup of Γ′. We define

the trace TrΓ\Γ′ from Γ to Γ′ to be the operation

TrΓ\Γ′ f =
m∑
i=1

f |kγi, (2.7)

where {γ1, . . . , γm} is a system of right coset representatives for Γ\Γ′. If f is modular on Γ then
TrΓ\Γ′ is modular on the larger group Γ′. When Γ = Γ0(N) and Γ′ = Γ0(N ′), we simply write
TrN\N ′ for TrΓ\Γ′ .

First consider Γ = Γ0(pN) and Γ′ = Γ0(N). The following generalizes [37, Lemma 7].

Lemma 2.10. Let p - N be prime.

(a) A set of representatives for Γ0(pN)\Γ0(N) is given by{(
1 0
0 1

)}
∪
{(

1 λ
N Nλ+ 1

)
: 1 ≤ λ ≤ p

}
.

(b) If f is a weight k modular form on Γ0(pN) then

TrpN\N f = f + p1−k/2(f |kWp)|Up

where Wp is the corresponding Atkin–Lehner involution on Γ0(pN).

Proof. Since [Γ0(N) : Γ0(pN)] = p+ 1, part (a) follows upon checking that the representatives
are inequivalent modulo Γ0(pN). One can also check that for any 1 ≤ λ ≤ p, if µ ≡ N−1 (mod p),
then (

1 λ
N Nλ+ 1

)
= VWp

(
1/p (λ+ µ)/p
0 1

)
for some V ∈ Γ0(pN). Part (b) follows from this. �

The remainder of this section will extend Lemma 2.10 to the more general context we need,
for example tracing from Γ0(pN)+e, . . . to Γ0(N)+e, . . . for p - N . More precisely, for a prime
p - nh, suppose that Γ is a pn|h-type group with eigenvalue map η with p - e for all e ∈ AL(Γ).
Let Γ′ be the n|h-type group such that AL(Γ′) = AL(Γ). We have Γ ⊂ Γ′, and can take η′ to
be the eigenvalue map on Γ′ with η′|Γ = η. Since Γ′ is generated by

x =

(
1 1/h
0 1

)
, y =

(
1 0
n 1

)
, We such that e ∈ AL(Γ′) = AL(Γ)

as in Section 2.1, this uniquely determines η′. Then [17, Lemma 2.3] and [17, Theorem 2.7]
together imply that the inclusion of representatives

ι : Γ/Γ0(pnh) ↪→ Γ′/Γ0(nh)

is an isomorphism. We set H = im(ι|Γη) ≤ Γ′, and consider the restricted isomorphism

ι|Γη : Γη/Γ0(pnh)
∼
↪→ H/Γ0(nh). (2.8)

We have that H ≤ Γ′η′ . Moreover, im η′ = im η, so [Γ′ : Γ′η′ ] = [Γ : Γη] = [Γ′ : H] and thus
Γ′η′ = H. We have nearly proved the following lemma.
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Lemma 2.11. Let Γ be a pn|h-type group with eigenvalue map η such that p - e for all e ∈ AL(Γ).
Let Γ′ be an n|h-type group with AL(Γ′) = AL(Γ) with eigenvalue map η′ such that η′|Γ = η.
Then for any weight k modular form on Γη we have

TrΓη\Γ′η′
f = Trpnh\nh f = f + p1−k/2(f |kWp)|Up.

Proof. We need to show TrΓη\Γη′ f = Trpnh\nh f . Let {γi} be any set of representatives for

Γ0(pnh)\Γ0(nh). Then {γi} is also a set of representatives for Γη\Γ′η′ . Indeed, by the isomor-
phism (2.8) we have [Γ′η′ : Γη] = [Γ0(nh) : Γ0(pnh)] so it suffices to check that no two γi are

equivalent. Suppose γiγ
−1
j ∈ Γη. Then γiγ

−1
j ∈ Γ∩Γ0(nh) = Γ0(pnh) so that γi = γj as desired.

The formula then follows from Lemma 2.10. �

Remark 2.12. Lemma 2.11 only assumes that f is on Γη. Under the stronger assumption
that f is on (Γ, η), we obtain the finer result that Trpnh\nh f is on (Γ′, η′). To see this, let x and
Y = yp be the generators of Γ0(pn|h)/Γ0(pnh), and choose appropriate representatives of We

which normalize Γ0(nh). Then, apply x, Y , and We to both sides of (2.7).

3 p-adic modular forms

In this section, we extend of Serre’s theory of p-adic modular forms from [37] to Hauptmoduln
and n|h-type groups. In particular, we study the interaction between eigenvalue maps and the
mod p weight filtration. These p-adic properties could be studied by extending the theory of
Katz and others, but we choose to generalize Serre’s original treatment in order to perform
explicit calculations for our applications. Take p ≥ 5, and let Γ be an n|h-type group with
eigenvalue map η. We first study Mk(Γ, η) and its p-adic completion. In Section 3.1 we prove
that Hauptmoduln T become p-adic modular forms on some (Γ′, η′) under applications of Up.
In Section 3.2 we extract structural results concerning ordinary spaces and the action of Up
on these p-adic modular forms. Again, readers interested only in modular groups of the form
Γ0(N)+e, . . . can take h = 1 and let eigenvalue maps be identically 1.

For an n|h-type group Γ with eigenvalue map η : Γ→ µ2h, we first define the spaces:

(1) MQ
k (Γ, η) = Mk(Γ, η) ∩ Q[[q]], the Q-vector space of modular forms with rational q-

expansion;

(2) M
(p)
k (Γ, η) = Mk(Γ, η) ∩ Z(p)[[q]], the Z(p)-module of modular forms with p-integral q-

expansion; and

(3) M̃k(Γ, η) = M
(p)
k (Γ, η)⊗ Fp, the Fp-vector space obtained by reducing M

(p)
k (Γ, η) mod p.

Similarly define MQ
k (Γη), M

(p)
k (Γη), and M̃k(Γη). If f reduces mod p to a form in M̃k(Γ, η), we

abuse notation and write f ∈ M̃k(Γ, η), and similarly for Γη. We focus on Mk(Γ, η), and the
corresponding results for Mk(Γη) follow from Lemma 2.3.

Following [37], we define a p-adic modular form on (Γ, η) to be a q-expansion f ∈ Qp[[q]]
admitting a sequence fm ∈MQ

km
(Γ, η) that converges p-adically with vp(fm − f)→∞, i.e.,

lim
m→∞

fm = f.

Similarly, a p-adic modular form on Γ is a p-adic modular form on (Γ,1).
For any N , if f , f ′ are modular forms on Γ0(N) of weight k, k′ and f ≡ f ′ (mod pn) then

k ≡ k′
(
mod pn−1(p− 1)

)
(see [28, Corollary 4.4.2]). It follows that the weight of a p-adic

modular form on Γ0(N), defined as the limit of the km in the space

X = lim←−Z/p
nZ× Z/(p− 1)Z = Zp × Z/(p− 1)Z,
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exists and does not depend on the choice of sequence (fm). The same is true of p-adic modular
forms on (Γ, η), since Mk(Γ, η) ⊆ Mk(Γ0(nh)). In particular, forms in Mk(Γ, η) have trivial
nebentypus, as required in [28].

The correct extension of the mod p weight filtration to modular forms for n|h-type groups
will feature a quadratic twist. To this end, we first twist our eigenvalue maps.

Definition 3.1. Let Γ be an n|h type group and p - nh a prime. If η is an eigenvalue map on Γ,
then the twist of η is the map ηt : Γ→ µ2h defined by

ηt(γ) = η(γ) for γ ∈ Γ0(n|h) and ηt(We) =

(
e

p

)
η(We) for e ∈ AL(Γ),

where
(
·
p

)
denotes the Legendre symbol.

Remark 3.2. If 1 denotes the trivial eigenvalue map 1(γ) = 1 for all γ, then ηt = η1t for all η.

Also, if
(
e
p

)
= 1 for all e ∈ AL(Γ) then η = ηt.

Below, we collect some useful facts and begin to see the relationship between eigenvalue map
twists and the weight mod 2(p − 1). Let Ek(τ) denote the weight k Eisenstein series with
constant term 1.

Proposition 3.3. Let Γ be an n|h-type group with eigenvalue map η, and let p ≥ 5 be prime
with p - nh.

(a) Let F (τ) = Ep−1(hτ). Then

F̂ =
∑

e∈AL(Γ)

(
e

p

)
F |p−1We ∈Mp−1(Γ,1t)

is congruent to # AL(Γ) mod p.

(b) For all k, we have the inclusions

M̃k(Γ, η) ⊆ M̃k+p−1(Γ, ηt) ⊆ M̃k+2(p−1)(Γ, η) ⊆Mk+3(p−1)(Γ, ηt) ⊆ · · · .

(c) Suppose η 6= ηt. Then for f ∈MQ
k (Γ, η) and f ′ ∈MQ

k′(Γ, η) we have that

0 6≡ f ≡ f ′ (mod pn) implies k ≡ k′ (mod 2pn−1(p− 1)).

(d) If η 6= ηt then the weight of a p-adic modular form on (Γ, η) is well-defined as an element
of X̂ = Zp × Z/(2p− 2)Z.

Proof. Since F is invariant under Γ0(n|h), the statement that F̂ ∈Mp−1(Γ,1t) becomes

F̂ |We =

(
e

p

)
F,

which follows from multiplicativity of the Legendre symbol. We also have

F |p−1We(τ) =

(
h ∗ eh2

h

) p−1
2

Ep−1

((
h ∗ eh2

)
τ
)
≡
(
e

p

)
(mod p)
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since Ep−1 ≡ 1 (mod p) (see [37, Section 1]). Thus F̂ ≡
∑

e∈AL(Γ)

1 (mod p), giving part (a).

Since p 6= 2, this implies 1 ∈ M̃p−1(Γ,1t), giving part (b) since η1t = ηt and

Mk(Γ, η) ·Mk′(Γ, η
′) = Mk+k′(Γ, ηη

′).

For part (c), we already know k ≡ k′ (mod pn−1(p− 1)). Assume without loss of generality
that k ≤ k′. If k 6≡ k′ (mod 2p− 2) then by part (b) there exists g ∈ MQ

k′(Γ, ηt) with g ≡ f
(mod p). Since η 6= ηt, let e ∈ AL(Γ) be a quadratic nonresidue so that

η(We)f
′ = f ′|k′We ≡ g|k′We = −η(We)g ≡ −η(We)f

′ (mod p) ,

which implies f ′ ≡ f ≡ 0 (mod p). Part (d) then follows. �

This motivates the following Fp-spaces, which incorporate these twisted inclusions. Set

M̃(Γ, η)α =
⋃

k≡α (mod 2p−2)

M̃k(Γ, η) ∪
⋃

k≡α+p−1 (mod 2p−2)

M̃k(Γ, ηt)

for α ∈ Z/(2p − 2)Z. If every e ∈ AL(Γ) is a quadratic residue mod p, we have η = ηt, and
M̃(Γ, η)α only depends on α mod p− 1.

3.1 Producing p-adic modular forms from Hautpmoduln

Let Γ be a pαn|h-type group with eigenvalue map η where p - nh is prime. Suppose Γη is genus

zero, and its Hautpmodul T is on Γ with eigenvalue map η. We show that for some β, T |Uβp is
a p-adic modular form on (Γ′, η′) for some specified n|h-type group Γ′ and eigenvalue map η′.
We can take β = 1 whenever α ≤ 3.

Lemma 3.4. Let Γ be a pαn|h-type group for p - nh prime, and η be an eigenvalue map
on Γ. Let f be a weight 0 weakly holomorphic modular form on (Γ, η) that is holomorphic away
from ∞. Let Γ′ be the n|h-type group with e ∈ AL(Γ′) if and only if e ∈ AL(Γ) and p - e. Let
β = max{1, α− 1}, and let η′ be the eigenvalue map on Γ′ such that

η′(x) = η
(
xp

β)
, η′(y′) = η

(
yp

α+β)
, η′(We) = η(We) for e ∈ AL(Γ′),

where x, y, y′ are the generators of Γ0(pαn|h) and Γ0(n|h) given by

x =

(
1 h
0 1

)
, y =

(
1 0
pαn 1

)
, y′ =

(
1 0
n 1

)
.

Then, f |Uβp is p-adic modular form of weight 0 on (Γ′, η′).

Proof. By Lemma 2.2, f |Uβp is a weakly holomorphic modular form on (Γ, ν) where Γ is the
pn|h-type group Γ where e ∈ AL(G) if and only if e ∈ AL(Γ) and p - e, and ν satisfies

ν(x) = η
(
xp

β)
, ν(Y ) = η

(
yp

α+β−1)
, ν(We) = η(We), where Y =

(
1 0
pn 1

)
.

The remainder of the proof follows [37, Theorem 10]. To show that f |Uβp is a p-adic modular
form on (Γ′, η′), we set for m ≥ 0

fm = TrGν\Γ′η′
(
f |Uβp gp

m)
= Trpnh\nh

(
f |Uβp gp

m)
,
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where g is the modular form on Γ given by Lemma 2.6. Since

η′(x) = ν(x) = η
(
xp

β)
and η′(y′) = ν(Y p) = η

(
yp

α+β)
and

η′(We) = ν(We) = η(We) for e ∈ AL(Γ′)

we know fm is a weakly holomorphic modular form on (Γ′, η′) by Lemma 2.11. Lemma 2.4

shows that f |Uβp has poles only at the cusps equivalent to 0 on Γ0(p), and since g has zeros at all

such cusps, we know f |Uβp gm is holomorphic for m sufficiently large. If a is the weight of g, the

weight of fm is apm, which p-adically converges to 0. Hence it suffices to show that fm → f |Uβp
in the p-adic limit. We compute that

fm − f |Uβp =
(
fm − f |Uβp gp

m)
+ f |Uβp

(
gp

m − 1
)
,

vp
(
fm − f |Uβp

)
≥ min

{
vp
(
fm − f |Uβp gp

m)
, vp
(
f |Uβp

)
+ vp

(
gp

m − 1
)}
.

Since gp
m ≡ 1

(
mod pm+1

)
, we have vp

(
f |Uβp

)
+ vp

(
gp

m − 1
)
≥ m+ 1. Lemma 2.11 implies

fm − f |Uβp gp
m

= p1−apm/2(f |Uβp gpm |apmWp

)
|Up,

and since applying Up does not decrease the power of p dividing a q-expansion, we have

vp
(
fm − f |Uβp gp

m) ≥ 1− apm

2
+ vp

(
f |Uβp |0Wp

)
+ pmvp(g|aWp)

≥ 1 + vp
(
f |Uβp |0Wp

)
+ pm

(
vp(g|aWp)−

a

2

)
.

Lemma 2.6 gives vp(g|aWp) >
a
2 . Hence, vp

(
fm − f |Uβp

)
→∞ as m→∞, as desired. �

Remark 3.5. If Γ is a pαn|h-type group with eigenvalue map η such that Γη is genus zero,
and the Hauptmodul T on Γη is on (Γ, η), then Lemma 3.4 applies. Moreover, since T r is on
(Γ, ησr), the lemma also applies to powers of the Hauptmodul. In particular, polynomials in T
are p-adic modular forms on Γ′η′ after enough applications of Up.

3.2 Ordinary spaces

Having produced p-adic modular forms from Hauptmoduln on certain n|h-type groups, we now
study the action of Up. The key idea, developed by Serre on level 1 in [37], is that Up contracts
mod p modular forms onto a finite-dimensional space. These structural results will allow us to
verify p-adic annihilation of certain Hauptmoduln in Section 4.2.

We will take p ≥ 5 prime with p - nh. For the Hecke operator Tp, we have

f |kTp = f |Up + pk/2−1f |kA = f |Up + pk−1f(pτ), where A =

(
p 0
0 1

)
,

so f |Up ≡ f |kTp (mod p) for k ≥ 2. Since Tp acts on Mk(Γ0(nh)), we know Up acts on
M̃k(Γ0(nh)). Furthermore, let Γ be an n|h-type group and η be an eigenvalue map. Since

Ax = xpA, Ayp = yA, AWe = WeA for p - e,

Lemma 2.2 implies that Tp : Mk(Γ, η) → Mk(Γ, η
σp). Hence Up : M̃k(Γ, η) → M̃k(Γ, η

σp), so we
consider the space

M̃k(Γ, [η]p) = M̃k(Γ, η) + M̃k(Γ, η
σp),
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which is stabilized by Up. This sum is direct if and only if η 6= ησp . We thus set

M̃(Γ, [η]p)
α = M̃(Γ, η)α + M̃(Γ, ησp)α

and remind the reader that M̃(Γ, η)α already encodes spaces with twisted eigenvalue map. We
next show how Up contracts M̃(Γ, [η]p)

α onto a finite-dimensional space called the ordinary
space. Ordinary spaces of p-adic modular forms were extensively studied by Hida [25]. We
describe our ordinary spaces in the language of Serre’s p-adic modular forms.

Proposition 3.6 (ordinary decomposition). Let Γ be an n|h-type group with eigenvalue map η.

(a) We can write

M̃(Γ, [η]p)
α = S(Γ, [η]p)

α ⊕N(Γ, [η]p)
α

so that Up is bijective on the ordinary space S(Γ, [η]p)
α and locally nilpotent on N(Γ, [η]p)

α;
that is, for any N(Γ, [η]p)

α, we have f |Unp = 0 for n sufficiently large.

(b) Let 4 ≤ k ≤ p+ 1 be such that k ≡ α (mod p− 1). If k ≡ α (mod 2p− 2) then

S(Γ, [η]p)
α ⊆ M̃k(Γ, [η]p).

Otherwise,

S(Γ, [η]p)
α ⊆ M̃k(Γ, [ηt]p).

Proposition 3.6 can be interpreted to mean that repeated application of Up reduces the weight
of a modular form mod p to either 0 or p − 1. To accomplish this, we need to incorporate the
twisted eigenvalue maps. More precisely, the filtration of f ∈ M̃(Γ, [η]p)

α with respect to (Γ, η) is

wΓ,η(f) = min
{
k : f ∈ M̃k(Γ, [η]p) or M̃k(Γ, [ηt]p)

}
.

When (Γ, η) is clear from context, we will simply write w for wΓ,η. Similarly, the filtration wΓ

of a modular form mod p with respect to Γ is the filtration with respect to (Γ,1).
To prove Proposition 3.6 we generalize the following fact from [27].

Lemma 3.7. Suppose Γ = Γ0(N). Then for modular forms f mod p on Γ we have

wΓ(f |Up) ≤ p+
wΓ(f)− 1

p
.

In particular, wΓ(f |Up) < wΓ(f) if wΓ(f) > p+ 1.

We give a suitable modification of Lemma 3.7 for (Γ, η).

Lemma 3.8. Let Γ be an n|h-type group with eigenvalue map η. For f ∈ M̃(Γ, [η]p)
α,

wΓ,η(f |Up) ≤ p+
wΓ,η(f)− 1

p
.

Proof. We first consider the special case Γ = Γ0(n|h). We proceed by induction on the finite
index [Γ : Γ0(nh)]. Suppose that for some Γ0(nh) ≤ Γ′ � Γ0(n|h) we have

wΓ′,η|Γ′ (f |Up) ≤ p+
wΓ′,η|Γ′ (f)− 1

p
. (3.1)
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Let T ∈ Γ0(n|h)/Γ′ be a representative for a nontrivial coset. Setting Γ′′ = 〈Γ′, T 〉 and η′′ = η|Γ′′,
we will prove that (3.1) also holds for (Γ′′, η′′).

Let f ∈M (p)
k (Γ′′, [η′′]p) ⊆M (p)

k (Γ′, [η|Γ′]p) be a modular form of filtration k. By assumption

there is some g ∈M (p)
k′ (Γ′, [η|Γ′]p) with g ≡ f |Up (mod p) and of filtration

k′ ≤ p+
k − 1

p
.

Let t be the order of T in Γ′′/Γ0(nh), and let πm be the projection

πm(g) =
1

t

t−1∑
`=0

e−2πi`/tg|k′T `

onto the e2πim/t eigenspace of T . Since p ≥ 5, we know p - t. Thus, if ϕ, ϕ′ have the same weight
and ϕ ≡ ϕ′ (mod p), then πm(ϕ) ≡ πm(ϕ′) (mod p).

By Proposition 3.3, multiplying by some power of F̂ gives f ′ ∈ M (p)
k (Γ′, [η|Γ′]p) with f ′ ≡ g

(mod p). Since F̂ is invariant under Γ0(n|h), we have

πm(g) ≡ πm(f ′) ≡ πm(f) (mod p) .

Let m be such that η(T ) = e2πim/t and set

π =

{
πm if πpm = πm,

πm ⊕ πpm otherwise,

which is projection onto the span of the eigenspaces of T specified by [η]p. Thus, we have

π(g) ≡ π(f) = f (mod p). Then π(g) ∈M (p)
k′ (Γ′′, [η′′]p) with π(g) ≡ f (mod p) as desired.

Extending by Atkin–Lehner involutions We is a similar computation. Define the projections
as before, replacing T with the order t = 2 action We. The function F̂ is not necessarily fixed
by We, but rather lies in the

(
e
p

)
-eigenspace of We. Thus

πm+ε(g) = πm(f ′) ≡ πm(f) (mod p)

where ε = 1
2

(
1−

(
e
p

))
, and we have π(g) ∈M (p)

k′ (Γ′′, [η′′]p) or π(g) ∈M (p)
k′ (Γ′′, [η′′t ]p). �

Proof of Proposition 3.6. Let k be as in the statement of Proposition 3.6. Set

S(Γ, [η]p)
α =

{⋂
n≥1 imUnp |M̃k(Γ, [η]p) if k ≡ α (mod 2p− 2) ,⋂
n≥1 imUnp |M̃k(Γ, [ηt]p) otherwise.

Also set

N(Γ, [η]p)
α =

⋃
n≥1

kerUnp |M̃(Γ, [η]p)
α.

Lemma 3.8 shows that these spaces satisfy the conditions of the proposition. �

Proposition 3.6 will be fundamental for proving p-adic annihilation in Section 4.
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2 3 5 7 11
1 20|2+5 1 1 1 1
2+ 20|2+10 2+ 2+ 2+ 3|3
2 22+ 3+ 3+ 3|3 4|2+
3+ 22+11 3 3|3 4|2+ 11+
3|3 24|2+ 3|3 4|2+ 7+
4+ 24+ 6+ 5+ 7
4|2+ 24|2+3 6+2 5 8|4+
4 24|6+ 6|3 6+ 14+
4|2 24|4+6 8|4+ 6|3 21|3+
5+ 24|4+2 9+ 7+ 28|2+
6+ 24|2+12 9 8|4+
6+3 24|12 12|3+ 8|4
6|3 28|2+ 12|6 10+
8+ 28+7 15|3 10+2
8|2+ 28|2+14 18+2 12|3+
8|4+ 32+ 18+ 15+
8|2 32|2+ 18 15|3
8 36|2+ 21|3+ 16|2+
8|4 40|4+ 24|6+ 20|2+
10+ 40|2+ 24|4+2 21|3+
10+5 40|2+20 24|12 24|4+6
11+ 44+ 27+ 25+
12+ 48|2+ 30|3+10 30+
12|2+ 52|2+ 36+4 30|3+10
12|3+ 52|2+26 39|3+ 35+
12+3 56|4+14 42|3+7 40|4+
12|2+6 60|2+ 54+ 50+
12|2+2 60|2+5, 6, 30 57|3+
12 60|6+10 60|6+10
12|6 68|2+ 84|3+
16|2+ 84|2+ 93|3+
16 84|2+6, 14, 21
16+ 88|2+
20+ 104|4+
20|2+

Table 4.1. Hauptmoduln with p-adic annihilation.

4 p-adic annihilation

In this section, we restrict our focus to the n|h-type groups appearing in monstrous moonshine,
and we prove the following theorem, first mentioned in the introduction, which gives a class of
Hauptmoduln from monstrous moonshine that are p-adically annihilated for small primes p.

Theorem 4.1. Let p be a prime. If Γ is an n|h-type group as specified in Table 4.1, then the
Hauptmodul on Γλ is p-adically annihilated by Up.

For all Hauptmoduln T appearing in monstrous moonshine, we computed T |Unp for small
values of n and small primes p. These data, as well as heuristics governing the sizes of the
ordinary spaces S(Γ, [λt]p)

0 for n|h-type groups Γ, lead us to the following conjecture (the
relevancy of the ordinary space to p-adic annihilation is discussed in Section 4.2).

Conjecture 4.2. The converse to Theorem 4.1 holds, meaning that the Hauptmoduln of Tab-
le 4.1 are the only Hauptmoduln appearing in monstrous moonshine with p-adic annihilation.
In particular, no Hauptmodul appearing in monstrous moonshine is p-adically annihilated for
p ≥ 13.

Remark 4.3. Given an admissible n|h-type group Γ, we remark here on a method for showing TΓ

is not p-adically annihilated for a given p. By Lemma 3.4, after applying Up enough times we
may assume that p - nh. Then after further applying Up, we have that T |Uαp ∈ M̃p−1(nh) for

some α. Since M̃p−1(nh) is finite-dimensional, it is then straightforward to verify that T is not
p-adically annihilated. For small levels and primes, this method is easy to apply; for example one
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finds that J is not 13-adically annihilated since J |U2
13 ≡ J |U13 (mod 13). However, this method

quickly starts requiring many coefficients of the Hauptmoduln and basis elements of Mp−1(nh),
particularly when p is large.

Empirically, it appears that for p=2, 3 one may use a similar approach with the space M̃4(nh).

Remark 4.4. It is known that J |Up 6≡ 0 (mod p) for any p ≥ 13 [38], and see [16] for further
study of such congruences.

In Section 4.1, generalizing formulas of Conway and Norton [10], we write down compression
formulas which relate Hauptmoduln on different groups n|h-type groups appearing in Moon-
shine. These relations will reduce the verification of Theorem 4.1 to a smaller set of groups,
which will be easier to verify computationally. In Section 4.2, we utilize the theory developed
in Section 3 to prove annihilation for the entries in the table of Theorem 4.1 with p ≥ 5. In
Section 4.3, we use separate techniques due to Lehner and verify the remaining entries, corre-
sponding to p = 2, 3. These techniques are sufficiently explicit to give rates of p-adic annihilation
in certain cases. Finally, we discuss in Section 4.4 a connection between p-adic annihilation of
Hauptmoduln and the group structure of the monster group.

4.1 Compression formulas

Throughout this section, we use the following notation. If Γ is the group Γ0(n|h) + e1, e2, . . . ,
then we write Γd for the group Γ0(n′|h′) + e′1, e

′
2, . . . where n′ = n/ gcd(n, d), h′ = h/ gcd(h, d),

and e′1, e
′
2, . . . are the divisors of n′/h′ among e1, e2, . . . . This notation comes from [10], where

it is explained that for any element g of the monster, if Tg is the Hauptmodul for the group Γλ
corresponding to g from moonshine, then Tgd is the Hauptmodul for Γdλ. Additionally, if Γ is the
group Γ0(n|h)+e1, e2, . . . , then we write 〈Γ, we〉 for the group Γ0(n|h)+e1, e2, . . . , e1∗e, e2∗e, . . .
generated by Γ and we, if it exists. In this section, we will also adopt the notation TΓ for the
Hautpmodul on Γλ.

The formula

pTΓ|Up = TΓp − TΓ if wp ∈ Γ (4.1)

relating the Hauptmodul for gp with that of g for g ∈ M appears in [10, Section 8]. The
following relations are of a similar form, and they allow us to connect the p-adic properties of
Hauptmoduln on closely related groups.

Proposition 4.5. Let Γ be a prn|h-type group where p is prime and p - nh. Then, whenever all
of the relevant groups appear in monstrous moonshine,

(a) pTΓ|Up = TΓ − T〈Γ,wp〉 if r = 1 and p - e for we ∈ Γ,

(b) p2TΓ|U2
p = TΓ − TΓp if r = 1 and p - e for we ∈ Γ,

(c) pTΓ|Up = T〈Γp,wpr−1〉 − TΓp if r > 1 and wpr ∈ Γ, and

(d) TΓ|Up = −TΓp |Up if r = 2 and wp2 ∈ Γ.

Remark 4.6. If r = 1, p - e for we ∈ Γ, and 〈Γ, wp〉 appears in monstrous moonshine, then
part (b) follows from part (a) and (4.1). However, part (b) holds even when 〈Γ, wp〉 is not
admissible. For example 4T6|3|U2

2 = T6|3 − T3|3 even though 6|3+ is not admissible. Similarly,
if r = 2, wp2 ∈ Γ, and 〈Γp, wp〉 appears in monstrous moonshine, then part (d) follows from
parts (a) and (c), but part (d) holds even when 〈Γp, wp〉 is not admissible.

In each case, there are only finitely many Hauptmoduln satisfying the hypotheses, and for
each, we may apply Lemma 2.9, use Sturm’s bound, and check that sufficiently many of the
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coefficients are zero (2500 coefficients suffice in all cases). These relations reduce the number
of Hauptmoduln one needs to check to show that the Hauptmoduln in Theorem 4.1 are indeed
annihilated. For example, (a) implies that if Γ is an pn|h-type group with p - n and TΓ is
p-adically annihilated, then so is T〈Γ,wp〉. Note that many of these formulas allow us to prove
that TΓp is p-adically annihilated from the fact that TΓ is, which explains much of the structure
in the figures in Appendix B. In some sense, Proposition 4.5 suggests that p-adic properties of
Hauptmoduln must be closely related to moonshine modules, since they tend to be preserved
under power maps in the underlying group. Since we have already proved that T is p-adically
annihilated in the cases where T |Up = 0 (see Remark 2.5), we have altogether reduced the
verification of Theorem 4.1 to the following much smaller check.

Corollary 4.7. In order to show that the Hauptmoduln in Theorem 4.1 are p-adically annihi-
lated, it suffices to check p-adic annihilation for the following smaller set shown in Table 4.2.

2 3 5 7 11
6+3 6+2 4|2+ 2+ 3|3
6|3 24|4+2 6+ 3|3 4|2+
10+5 6|3 4|2+ 11+
22+11 7+ 8|4+

8|4+
8|4
12|3+
16|2+
21|3+
24|4+6
30|3+10

Table 4.2. Hauptmoduln for which it suffices to prove Theorem 4.1.

One has a significant amount of freedom in choosing these representatives – we have chosen
those most conducive to performing computations when p = 2, 3. When p ≥ 5 we will prove
Theorem 4.1 directly in Section 4.2 rather than using the reduction given here.

4.2 Annihilation via ordinary spaces

In this section, we will prove Theorem 4.1 for p ≥ 5 using the theory of p-adic modular forms
developed in Section 3. The key observation relating the theory of p-adic modular forms to
p-adic annihilation is the following easy consequence of Proposition 3.6.

Lemma 4.8. Suppose that S(Γ, [η]p)
0 ⊆ Fp. If f is a weight 0 p-adic modular form on (Γ, η),

we have f |Unp → c in the p-adic limit, where c is the constant term of f .

When f = T |Up for T a Hauptmodul, then c = 0. By Lemma 3.4, f is a weight 0 p-adic
modular form on (Γ, η) for some Γ, η. Hence Lemma 4.8 applies.

Using the mfslashexpansion and mfatkin functions in Pari [34], one can compute the actions
of

x =

(
1 h
0 1

)
, y =

(
1 0
n 1

)
,

and all Atkin–Lehner involutions on Mp−1(Γ, [λt]p). Then using elementary linear algebra, it is
easy to find a basis for S(Γ, [λ]p)

0 ⊆ M̃p−1(Γ, [λt]p). We performed this computation for various
n|h groups Γ appearing in monstrous moonshine with small values of n with p - n (specifically,
n ≤ 24 for p = 5, n ≤ 11 for p = 7, and n ≤ 7 for p = 11).

The Γ for which S(Γ, [λ]p)
0 ⊆ Fp are given in Table 4.3. Applying Lemma 3.4 to the

Hauptmoduln of Table 4.1 then proves Theorem 4.1 for p ≥ 5. We note that every group from
Table 4.3 corresponds to at least one group from Theorem 4.1.
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p = 5 1 2+ 3+ 3|3 4|2+ 6+ 6|3 7+ 8|4+ 8|4 12|3+ 16|2+ 24|4+6
p = 7 1 2+ 3|3 4|2+ 8|4+
p = 11 1 3|3 4|2+

Table 4.3. Γ such that S(Γ, [λ]p)0 ⊂ Fp.

Remark 4.9. Another method for computing S(Γ, [λ]p) is as follows. By drawing fundamental
domains for Γλt , one can compute the dimension of the space Mp−1(Γλt). One then uses the
q-expansions of the modular forms T r|Ump to compute a basis for M̃p−1(Γ, [λt]p). Computing
S(Γ, [λt]p)

0 then amounts to linear algebra. We carried out this procedure in Sage [36], giving
an alternate verification of the results in Table 4.3. The Sturm’s bound calculations for this
method require checking 3500 coefficients.

It is worth noting that these methods also apply to Hauptmoduln not appearing in monstrous
moonshine. For example, if Γ = Γ0(2|2) and T is the Hauptmodul on Γλ then Lemma 3.4 gives
that T |U5 is a 5-adic modular form on (Γ, λ). Using the method above, one can compute that
S(Γ, [λ]p)

0 = 0, so that T is 5-adically annihilated.

Although the methods developed here do not directly give rates of annihilation, the following
observation held in all cases from Table 4.3, when checked with 10000 coefficients.

Remark 4.10. Let T be the Hauptmodul on some Γλ appearing in Table 4.1 for p ≥ 5, Γ′

from Table 4.3 as given by Lemma 3.4, and λ′ the corresponding eigenvalue map specified by
Conway–Norton. Let m be the smallest integer such that Ump M̃p−1(Γ′, [λ′]p) = S(Γ′, [λ′]p)

0.

Numerically, we observe vp
(
T |U `+m+1

p

)
≥ vp

(
T |U `p

)
+ 1, bounding the rate of annihilation from

below by 1/(m + 1). Moreover this choice of m appears to be tight. We pose the question of
whether these observations continue to hold to in general.

4.3 Additional p-adic annihilation

The ordinary spaces of Section 3.2 and the annihilation verified in Section 4.2 were restricted to
p ≥ 5. In this section, we use different techniques to explicitly verify p-adic annihilation for the
six groups appearing in Corollary 4.7 for the primes p = 2, 3.

Proposition 4.11. We have

vp
(
T |Unp

)
≥ bnαc,

when T is the normalized Hauptmodul on Γλ, with parameters given in Table 4.4.

Γ 6+2 6+3 10+5 22+11 6|3 24|4+2

p 3 2 2 2 2 3
α 3/2 1 3/2 1/2 3/2 1/2

Table 4.4. Rates of annihilation.

Proof. Throughout, we use T to denote the normalized Hauptmodul T plus some constant,
and η(τ) = q1/24

∏
n≥1

(1 − qn) is the Dedekind eta function. The constant will be specified by

writing T as an eta-quotient given in [10] and recorded in Table 4.5. We follow the methods of
[31, 32] for the j-function, and prove our six cases in parallel.

We first compute expansions of T at each cusp, and write T|Up as a rational function in
a Hauptmodul by subtracting off the principal part. Below, we write out the calculation for
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Γ 6+2 6+3 10+5 22+11 6|3 24|4+2

T η(τ)4η(2τ)4

η(3τ)4η(6τ)4
η(τ)6η(3τ)6

η(2τ)6η(6τ)6
η(τ)4η(5τ)4

η(2τ)4η(10τ)4
η(τ)2η(11τ)2

η(2τ)2η(22τ)2
η(3τ)8

η(6τ)8
η(4τ)η(8τ)
η(12τ)η(24τ)

Table 4.5. Eta quotients for unnormalized Hauptmoduln.

p = 3 and the group 6+2, and record only the formulas for the rest. These formulas may also
be verified via a Sturm’s bound coefficient check (600 suffice in all cases). Let

Sλ =

(
1 λ
0 p

)
and F2 =

(
0 −1
2 0

)
.

For W2 a suitable Atkin–Lehner matrix on Γ0(6), we have

3(T|U3) (−1/2τ) =
2∑

λ=0

T(SλF2) = T (−1/6τ) +
2∑

λ=1

T(SλF2τ)

= T (−1/6τ) +

2∑
µ=1

T(W2Tµτ) = T (−1/6τ) + 3(T|U3)(τ)− T(τ/3),

and upon substituting τ 7→ 3τ we obtain the cusp expansion

3(T|U3) (−1/6τ) = −q−1 +O(1).

We next subtract off this principal part with −T(τ). Sending τ 7→ −1/6τ and applying the η
functional equation to the quotients in Table 4.5, we find

3(T |U3)(τ) = −34T(τ)−1 + c

for some constant c. One can check that T|Up is bounded at the other cusps; see Lemma 2.4.
For appropriate constants c, similar computations show

p(T |Up)(τ) = −peT(τ)−1 + c, (4.2)

where e is as in Table 4.6.

Γ 6+2 6+3 10+5 22+11 6|3 24|4+2

e 4 6 4 2 4 1

Table 4.6. Parameters for functional equations.

These relations imply vp(T |Up) ≥ e − 1. Set Z = T−1 and W = peZ(τ/p). Expanding Z at
other cusps and applying the principal part analysis as above, we find

p(peZ|Up)(τ) = f(peZ).

where f is a polynomial with f(T(τ)) = T(pτ) +O(q) (different for each group). Write

(Z|Up)(τ) = pα
p∑
j=1

bjZ
j (4.3)

where the coefficients bj are listed in Table 4.7.
Following Lehner [32, equation (2.2)] gives

W p +

p∑
j=1

(−1)jpjW
p−j = 0, where (−1)j+1pj = pe+α+1

p∑
m=j

bmZ
m−j+1.
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6+2 6+3 10+5 22+11 6|3 24|4+2

b1 2 · 31/2 3 21/2 21/2 0 0

b2 4 · 35/2 24 23/2 21/2 23/2 0

b3 311/2 31/2

Table 4.7. Polyomial coefficients.

This equation has roots W (τ +λ) for λ ∈ {0, . . . , p−1}. If S` denotes the sum of the `-th power
of these roots, then we have p−e`−1S` = Z`|Up. We show that pα(`−1)(Z`|Up) ∈ pαZ ·Z[pαZ, pα]
for all ` ≥ 1. Equivalently, we check that S` ∈ p(e−α)`+1+αpαZ · Z[pαZ, pα].

Lehner uses Newton sums to set up an induction, relating S` to Sj for j < `. A similar
computation works for our cases. The coefficients in Table 4.7 imply the base case ` = 1. By
Newton sums we have

S` =
∑̀
j=1

(−1)j+1pjS`−j ,

where bj , ph = 0 for j, h ≥ p+ 1 and S0 = `. For ` ≤ p we rewrite the Newton sum as

S` =
`−1∑
j=1

(−1)j+1pjS`−j − (−1)``p`.

By construction we have that pj ∈ pe+1+α+vp(bj)−αpαZ · Z[pαZ, pα] and applying the inductive
hypothesis gives pjS`−j ∈ pe+1+α+vp(bj)−α+(e−α)(`−j)+1+αpαZ · Z[pαZ]. We have the inequality
e+1+α+vp(bj)−α ≥ (e−α)j, which one checks explicitly using the values of bj . In particular,
pjS`−j ∈ p(e−α)`+1+αpαZ ·Z[pαZ, pα]. We also check that `p` ∈ p(e−α)`+1+αpαZ ·Z[pαZ, pα] from
the explicit values of bj . Thus S` ∈ p(e−α)`+1+αpαZ · Z[pαZ, pα] for ` ≤ p. When l ≥ p + 1 we
have

S` =
`−1∑
j=1

(−1)j+1pjS`−j

and we check that pjS`−j ∈ p(e−α)`+1+αpαZ ·Z[pαZ, pα] as above, which completes the induction.
Thus, we have shown that(

pα(`−1)Z`|Up
)
∈ pαZ · Z[pαZ, pα]

so that if g ∈ Z · Z[pαZ, pα], then g|Up ∈ pαZ · Z[pαZ, pα]. Note that T |Up = −pe−1Z ∈
Z ·Z[pαZ, pα]. Repeatedly applying the result of the induction thus gives the rates of annihilation
claimed in Proposition 4.11. �

Remark 4.12. These explicit techniques also apply when p ≥ 5, as long as T |Up is modular on
a genus zero group. For example, if T is the Hauptmodul for 2+, then T |U5 is modular on 10+2,
which is genus zero. There are many examples for p ≥ 5 where this does not hold, e.g., if T the
Hauptmodul for 2+ then T |U7 is modular on 14+2, which is genus one. For this example, the
arguments of this section can be modified to obtain explicit lower bounds on the annihilation
rate, e.g., by working with bivariate polynomials in appropriate meromorphic modular forms
instead of single-variate polynomials in the Hauptmodul, since the latter do not exist for the
genus one curve corresponding to 14+2. In general, however, we rely on the theory of Section 3
to prove p-adic annihilation as in Section 4.2.
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4.4 Preservation of annihilation under power maps

We discuss the relationship between Hauptmoduln p-adic annihilation and power maps in the
monster. We have already seen hints of this in Section 4.1. Unlike previous sections, this section
will not be used elsewhere, except as motivation for Section 5.

Definition 4.13. For a fixed Hauptmodul Tg and an integer d, we say that p-adic annihilation
is preserved under the d-th power map if Tg p-adically annihilated implies Tgd is p-adically
annihilated.

These relationships are depicted in Appendix B for primes p ≤ 11, which we expect are the
only primes with annihilation. Note that if d is relatively prime to the order of g, then Tgd = Tg,
so p-adic annihilation is preserved under the d-th power map. We will therefore restrict our
attention to those d that divide the order of g. We first give conceptual explanations for this
preservation of p-adic annihilation, when it holds. We then characterize exactly when p-adic
annihilation is not preserved, and offer a notion of p-adic annihilation that seems to always be
preserved under power maps. The average numerical rates of annihilation from Appendix A
often do not decrease under power maps – we remark upon this briefly.

In certain situations, the compression formulas show that Hauptmodul p-adic annihilation
is preserved under power maps, e.g. powering from the group `+ to level 1, when ` is prime.
When p ≥ 5, we may also explain via ordinary spaces.

Example 4.14. When p = 5, the groups 50+, 10 + 2, 10+, and 2+ all have the same ordinary
space Fp = S(Γ0(2)+,1)0 ⊆ M̃p−1(Γ0(2)+,1t), and their Hauptmoduln share the same annihi-
lation behavior. This explains preservation of p-adic annihilation under p-th power maps. The
compression formulas of Proposition 4.5 capture these same relations.

Furthermore, in light of Lemma 4.8 and Section 4.2, we seek inclusions of the form S(Γd, [λ]p)
0

↪→ S(Γ, [λ]p)
0 for Γ being n|h-type with p - nh. This would explain d-th power map preservation

of p-adic annihilation from Γλ to Γdλ, and similarly for groups with the same ordinary spaces.
The following proposition accomplishes this in certain situations.

Proposition 4.15. Let p ≥ 5 be prime, (d, nh) = 1, Γ be an n|h-type group with eigenvalue
map η, and Γ′ be a dn|h-type group with eigenvalue map η′ such that

AL(Γ) = AL(Γ′), (d, e) = 1 for all e ∈ AL(Γ), and η|Γ′ = η′.

(a) There is an inclusion Mk(Γ, η) ⊆Mk(Γ
′, η′).

(b) For any α ∈ Z/(2p− 2)Z, there is an inclusion S(Γ, [η]p)
α ⊆ S(Γ′, [η′]p)

α.

Proof. Part (b) follows from part (a) using the description of S given in the proof of Propo-
sition 3.6. Part (a) follows from the isomorphic inclusion Γ/Γ0(dnh) ↪→ Γ′/Γ0(nh) from Sec-
tion 2.3. �

Remark 4.16. Inclusions of the form Mk(Γ, η) ⊆Mk(Γ
′, η′) may have further implications for

preserving average rates of p-adic annihilation via Remark 4.10.

We now discuss when power maps do not preserve Hauptmodul p-adic annihilation.

Example 4.17. If T is the Hauptmodul on Γλ for Γ an n|h-type group, then the Hauptmodul
on Γdλ need not be annihilated when d | h, which describe all the grey boxes in the figures of
Appendix B. For example, the Hauptmodul for 6|3 is 5-adically annihilated, but the Hauptmodul
for 2 is not.
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Example 4.18. If T is the Hauptmodul on Γλ and T |Up = 0, power maps from Γλ may not
preserve p-adic annihilation. For example, if T is the Hauptmodul on 12, T |Up = 0 while the
Hauptmodul on 6 is not 2-adically annihilated.

The classes of groups from Examples 4.17 and 4.18 exhaust the situations for which power
maps do not preserve Hauptmodul p-adic annihilation. If one further excludes the groups Γ with
TΓ|Up = 0, then rates of p-adic annihilation are preserved under power maps. These examples
motivate a notion of strong p-adic annihilation for genus zero groups. This strong notion of
annihilation will not be referenced outside of this section.

Definition 4.19. Let Γ be a genus zero group with Hauptmodul T . We say that Γ has strong
p-adic annihilation if every polynomial f(T ) in the Hauptmodul with no constant term is p-
adically annihilated.

In contrast with p-adic annihilation of Hauptmoduln, strong p-adic annihilation numerically
appears to be always preserved under power maps. Furthermore, our numerical data indicate
that rates of strong p-adic annihilation are also non-decreasing under power maps. We dis-
cussed polynomials in the Hauptmodul in Remark 3.5, and one finds that Γη has strong p-adic
annihilation if Sp−1(Γ,1t)

0 = Fp and Sp−1(Γ, [(λσr)t]p)
0 = 0 otherwise.

We can check that strong p-adic annihilation is now preserved for the groups of Example 4.17.
Indeed, let T be the Hauptmodul on Γλ for Γ an n|h-type group, and T ′ be the Hauptmodul
on Γdλ for d | h. We recall the Vm operator, given by f |Vm = f ◦ A where we set A = (m 0

0 1 )
as in Section 3.2. It acts on Fourier expansions by

(∑
a(n)qn

)
|Vm =

∑
a(n)qmn. From [10,

Section 6], we know that T ′|Vd + c = T d for some constant c. In particular, if T ′ is not p-
adically annihilated, T ′|Vd is a polynomial in T with no constant term and is also not p-adically
annihilated. Thus, if Γdλ does not have strong p-adic annihilation, neither does Γλ. This reflects
the following inclusions.

Proposition 4.20. Let p ≥ 5 and Γ be an n|h-type group with eigenvalue map η, and let Γ′ be
a nd|hd type group with eigenvalue map η′ such that

AL(Γ) = AL(Γ′), η′(x′) = η(x), η′(y′) = η(y), and

η′(We) = η(We) for all e ∈ AL(Γ)

for x, y and x′, y′ the usual generators of Γ0(n|h)/Γ0(nh) and Γ0(nd|hd)/Γ0

(
nhd2

)
.

(a) There is an injection given by the operator Vd : Mk(Γ, η) ↪→Mk(Γ
′, η′).

(b) For any α ∈ Z/(2p− 2)Z, this gives an injection Vd : S(Γ, [η]p)
α ↪→ S(Γ′, [η′]p)

α.

We observe empirically that strong p-adic annihilation is also preserved for the groups from
Example 4.18, e.g., T 2 is not 2-adically annihilated when T is the Hauptmodul on 12.

Further aspects of this connection between p-adic properties of modular forms and the asso-
ciated conjugacy classes of the monster group will be discussed in Section 5.

5 Moonshine

In this section, we will investigate groups with p-adic moonshine. Recall from the introduction
that a moonshine module for a finite group G is a graded G-module V =

⊕∞
n=−1 Vn such that

(i) For each g ∈ G, the McKay–Thompson series

Tg(τ) =

∞∑
n=−1

Tr(g
∣∣Vn)qn

is the Hauptmodul of an order ord(g) conjugacy class of the monster.
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(ii) For any g ∈ G and any n ∈ Z, if Tg is the Hauptmodul for Γ, then Tgn is the Hauptmodul
for Γn.

If for some prime p, V also satisfies the following property, then we call V a p-adic moonshine
module.

(iii) For each irreducible character χ of Γ, if mχ(n) is the multiplicity of χ in the character
of Vn, then the multiplicity generating function

Mχ(τ) =

∞∑
n=−1

mχ(n)qn

associated to χ is p-adically annihilated.

Throughout this section, we assume that Conjecture 4.2 holds. That is, we assume that Theo-
rem 4.1 exactly characterizes which of the 171 Hauptmoduln appearing in monstrous moonshine
are p-adically annihilated for each prime p.

We begin in Section 5.1 by stating basic facts about groups with p-adic moonshine, including
the fact that for each prime p, only finitely many such groups exist. In Section 5.2, we illus-
trate p-adic moonshine with several examples of groups having p-adic moonshine modules. In
Section 5.3, we find a surprising class of subgroups of the monster having p-adic moonshine in
a slightly more general sense.

5.1 Basic facts

We begin by presenting an alternative formulation of p-adic moonshine that will allow us to
make use of the results in Section 4.

Lemma 5.1. Let G be a finite group with a moonshine module V =
⊕∞

n=−1 Vn. For any
prime p, V is a p-adic moonshine module if and only if the McKay–Thompson series Tg is
p-adically annihilated for each g ∈ G.

Proof. By the Schur orthogonality relations, we have

Tg =
∑

χ∈Irrep(G)

χ(g)Mχ for each g ∈ G

and

Mχ =
1

|G|
∑
g∈G

χ(g)Tg for each χ ∈ Irrep(G).

If eachMχ is p-adically annihilated, then for all n ∈ N, there exists N ∈ N such thatMχ|UNp ≡ 0

(mod pn). Since each χ(g) is an algebraic integer, it follows that Tg|UNp ≡ 0 (mod pn), so each Tg
is p-adically annihilated. Similarly, if each Tg is p-adically annihilated, then each |G|Mχ, and
hence each Mχ, is also p-adically annihilated. �

As an immediate consequence, a group G has p-adic moonshine if and only if we can assign
to each element g ∈ G a p-adically annihilated Hauptmodul Tg in a way that agrees with power
maps in G and so that the multiplicities defined by

Mχ =
1

|G|
∑
g∈G

χ(g)Tg



p-Adic Properties of Hauptmoduln with Applications to Moonshine 27

have positive integral coefficients for all irreducible characters χ. In particular, each McKay–
Thompson series Tg must be a Hauptmodul for one of the groups listed in Theorem 4.1. In fact,
since we require that the assignment of group elements to Hauptmoduln agree with power maps,
we can restrict our attention to only those congruence groups Γ with the property that Γn is
p-adically annihilated for every n ∈ Z. By Theorem 4.1, it follows that every McKay–Thompson
series Tg must be a Hauptmodul for one of the groups listed in Table 5.1.

2 3 5 7 11
1 12|3+ 1 1 1 1
2+ 12+3 2+ 2+ 2+ 3|3
2 12|6 3+ 3+ 3|3 11+
3+ 16|2+ 3 3|3 4|2+
3|3 16 3|3 4|2+ 7+
4+ 16+ 6+ 5+ 7
4|2+ 20+ 6+2 5 8|4+
4 20|2+ 9+ 6+ 14+
4|2 20|2+5 9 7+ 21|3+
5+ 22+ 18+2 8|4+ 28|2+
6+ 22+11 18+ 10+
6+3 24|2+ 27+ 10+2
6|3 24+ 54+ 15+
8+ 24|2+3 15|3
8|2+ 24|6+ 20|2+
8|4+ 24|12 21|3+
8|2 32+ 25+
8 32|2+ 30+
8|4 40|4+ 35+
10+ 40|2+ 40|4+
10+5 44+ 50+
11+ 48|2+
12+ 88|2+
12|2+

Table 5.1. Candidate McKay–Thompson series for groups with p-adic moonshine.

As a first application of this simpler description of p-adic moonshine, the following proposition
bounds the powers of primes dividing the orders of groups with p-adic moonshine for each
prime p.

Proposition 5.2. Let p be a prime and G be a group with p-adic moonshine. Assuming that
Conjecture 4.2 holds, the following table gives for each prime q a value r such that every group G
with p-adic moonshine satisfies vq(|G|) ≤ r.

p = 2 p = 3 p = 5 p = 7 p = 11 p > 11

q = 2 46 12 15 15 0 0
q = 3 8 21 8 3 3 0
q = 5 3 0 9 0 0 0
q = 7 0 0 2 6 0 0
q = 11 2 0 0 0 2 0
q > 11 0 0 0 0 0 0

Proof. First, note that if q | |G|, then by Cauchy’s theorem, G contains an element of order q,
so there must be some Hauptmodul corresponding to a q|h-type group in Table 5.1. This proves
all of the cases with r = 0 above.

For the remaining cases with r > 0, we follow the method given in [12]. Let J, T1, . . . , Tn be
the distinct Hauptmoduln given in Table 5.1 as candidate McKay–Thompson series for groups
with p-adic moonshine. For each i ∈ {1, . . . , n}, let ai be the number of elements of G whose
McKay–Thompson series is Ti. Then, the multiplicity of the trivial character ε is

Mε =
1

|G|
∑
g∈G
Tg =

1

|G|
(J + a1T1 + · · ·+ anTn) .
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In particular, since Mε must have integral coefficients, it follows that

J + a1T1 + · · ·+ anTn ≡ 0 (mod |G|) .

Therefore, if we choose r large enough so that there are no coefficients a1, . . . , an such that

J + a1T1 + · · ·+ anTn ≡ 0
(
mod qr+1

)
,

then we have shown that vq(|G|) ≤ r. As in [12], this computation was carried out using Sage [36]
by computing the kernel of the matrix of coefficients of J, T1, . . . , Tn. �

5.2 Examples of groups with p-adic moonshine

We begin by illustrating the process of showing a group has p-adic moonshine using the group A5

and the prime p = 5. The character table for A5 is given below:

A5 1 (1 2)(3 4) (1 2 3) (1 2 3 4 5) (1 3 4 5 2)

ε 1 1 1 1 1
χ1 4 0 1 −1 −1
χ2 5 1 −1 0 0

χ3 3 −1 0 1+
√

5
2

1−
√

5
2

χ4 3 −1 0 1−
√

5
2

1+
√

5
2

Table 5.2. Character Table for A5.

The square of any element of the fourth conjugacy class listed in the character table is in
the fifth conjugacy class, so any moonshine module must have the same McKay–Thompson
series for elements of those two conjugacy classes. The only other non-trivial power relations
come from the fact that gord(g) = 1 for any g, so a possible assignment of 5-adically annihilated
McKay–Thompson series that agrees with power maps in A5 is given by assigning T1 to the
element of the conjugacy class of 1, T2+ to the elements of the conjugacy class of (1 2)(3 4), T3|3
to the elements of the conjugacy class of (1 2 3), and T5 to the elements of the conjugacy classes
of (1 2 3 4 5) and (1 3 4 5 2). The associated multiplicities are then given by

Mε = q−1 + 4378q + 382380q2 + 14714988q3 + 340105628q4 +O
(
q5
)
,

Mχ1 = 13122q + 1432996q2 + 57620010q3 + 1349723748q4 +O
(
q5
)
,

Mχ2 = 17500q + 1815128q2 + 72334998q3 + 1689829376q4 +O
(
q5
)
,

Mχ3 = 8753q + 1050626q2 + 42904992q3 + 1009618126q4 +O
(
q5
)
, and

Mχ4 = 8753q + 1050626q2 + 42904992q3 + 1009618126q4 +O
(
q5
)
.

In order to show that this gives a valid moonshine module, we must show that these multiplicities
are both positive and integral. For positivity, we may use inequality (4.16) in [12]. Indeed, this
inequality holds for n = 2, and hence for all n ≥ 2 since the left-hand side is monotonically
increasing. Since the first coefficients of each multiplicity generating function are positive, this
implies that all of them must be. For integrality, we may simply note that each multiplicity
generating function is on Γ0(90), so we may use Sturm’s bound to reduce the computation to
checking only the coefficients up to q216. Using Sage [36], it turns out to indeed be the case that
all of the coefficients are integers. Thus, A5 has 5-adic moonshine with the McKay–Thompson
series given above.

In fact, it turns out that p-adic moonshine is not such a rare phenomenon among groups with
small orders. Indeed, using Sage [36], we have computed that for every prime p, every group G
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of order at most 25 for which there is some assignment of p-adically annihilated Hauptmoduln to
elements of G obeying power maps has p-adic moonshine. In fact, out of all 45252 such feasible
assignments, only 11 do not give rise to a p-adic moonshine module, and all 11 exceptions are
for p = 2 and the group G = Z/2Z× (Z/3Z)2.

In certain special cases, these computations become somewhat simpler. For example, con-
sider the case of a non-trivial group G in which we assign every non-identity element the same
Hauptmodul T . In particular, this means that every non-identity element of G must have or-
der q for some prime q. We will characterize exactly when G has a p-adic moonshine module
under this assignment.

Under such an assignment, the multiplicity of the trivial character ε is given by

Mε =
1

|G|
∑
g∈G
Tg =

1

|G|
(J − T ) + T ,

and the multiplicity of any non-trivial character χ is given by

Mχ =
1

|G|
∑
g∈G

χ(g)Tg =
1

|G|

χ(e)J +
∑

g∈G−{e}

χ(g)T

 =
dimχ

|G|
(J − T ).

These multiplicities are both integral if and only if |G| | (J − T ), and for checking positivity,
we may once again use inequality (4.16) in [12]. After a computation in Sage [36], we have the
following result.

Proposition 5.3. Let p and q be primes, G be a group of exponent q, and T be a Hauptmodul
for one of the order q conjugacy class of the monster. Then, assuming that Conjecture 4.2 holds,
G has a p-adic moonshine module in which the McKay–Thompson series for each non-identity
element is T if and only if p and T appear in the following table and |G| ≤ qr where r is the
corresponding entry in the third row.

p 2 2 2 3 3 3 5 5 7 7 11

T 2+ 2 3|3 3+ 3 3|3 5+ 5 7+ 7 11+

r 12 13 1 6 9 3 3 5 2 4 2

5.3 Centralizers in the monster

Other examples of p-adic moonshine come from subgroups of the monster meeting only those
conjugacy classes whose Hauptmoduln are p-adically annihilated, though Proposition 5.3 shows
that not every group with p-adic moonshine is of this form. In this section, we will exhibit
a surprising class of subgroups of the monster having p-adic moonshine in a slightly more general
sense.

Specifically, we say that a modular function f is weakly p-adically annihilated if f |Unp ≡ 0
(mod p) for some n ≥ 0, and that a moonshine module is a weakly p-adic moonshine module
if each McKay–Thompson series is weakly p-adically annihilated. For p ≥ 5, every McKay–
Thompson series in monstrous moonshine that is weakly p-adically annihilated is also p-adically
annihilated, so weakly p-adic moonshine and p-adic moonshine coincide. For p ∈ {2, 3}, however,
these notions diverge. In addition to those in Table 4.1, the McKay–Thompson series given in
Table 5.3 are weakly p-adically annihilated. In each case, this may be verified with a finite check
using Sturm’s bound (with at most 3500 coefficients).

Using GAP [21], we have found that for each p ∈ 2, 3, 5, 7, 11, the centralizer of a pA-pure
elementary abelian subgroup of the monster of order p2 has weakly p-adic moonshine given
by restricting the monster module. The ATLAS names of these groups, which were found
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2 3
3 15+ 30+ 2 13+ 28+
5 15+5 30+3, 5, 15 4+ 14+ 30+6, 10, 15
6+6 15|3 30+5, 6, 30 4|2+ 14+7 30+
6+2 17+ 30|3+10 4|2 15+ 31+
6 18+ 33+ 5+ 15+5 34+
7+ 18+9 34+ 5 15+15 36+
7 19+ 35+ 6+6 16|2+ 36|2+
9+ 20+4 36+ 6+3 17+ 39+
10+2 20+20 38+ 6 18+9 40|4+
10+10 21+ 41+ 7+ 18+18 40|2+
10 21+21 42+ 8|2+ 19+ 42+
12+4 24+8 42+6, 14, 21 8|4 20|2+ 45+
12+12 24+24 51+ 10+ 20|2+5 48|2+
13+ 26+ 56+ 10+10 20|2+10 51+
13 26+26 60+ 12+ 21+ 60|2+
14+ 28+ 66+ 12+4 24|2+ 60|2+5, 6, 30
14+7 29+ 70+ 12|2+ 24|4+6 62+
14+14 12|2+6 26+ 78+

12|2+2 28|2+ 84|2+

Table 5.3. Additional weakly p-adically annihilated McKay–Thompson series.

using [9, 42], are given in Table 5.4. In fact, each group in Table 5.4 intersects only those
conjugacy classes whose Hauptmoduln T satisfy T |Up ≡ 0 (mod p), which is somewhat stronger
than weakly p-adic annihilation.

p 2 3 5 7 11

C
(
pA2

)
22 · 2E6(2) 32 ×O+

8 (3) 52 × U3(5) 72 × L2(7) 112

#C
(
pA2

)
238·39·52·72·11·13·17·19 212·314·52·7·13 24·32·55·7 23·3·73 112

Table 5.4. Subgroups of the monster with weakly p-adic moonshine.

In light of this, it is natural to ask whether there are other natural subgroups of the monster
having p-adic or weakly p-adic moonshine and whether there is an explanation intrinsic to the
monster for the existence of weakly p-adic moonshine for these subgroups. More generally, we
pose the question of whether the results of this paper extend to other known cases of moonshine,
such as Conway moonshine [15], umbral moonshine [14], and Thompson moonshine [24]. Do
analogues of the groups in Table 5.4 exist for these other groups?

A Table of annihilation

The following table gives the precise congruences that numerically appear to be satisfied by each
Hauptmodul. The notation a1, . . . , am → b1, . . . , bn means the sequence beginning a1, . . . , am,
and then each subsequent term is given by adding bk (mod n) from k = 1 to ∞. For example,
0, 1→ 0, 3 is the sequence 0, 1, 1, 4, 4, 7, 7, 10, 10, . . . . The entry under p for the group Γ indicates
the sequence a1, a2, a3, . . . such that an is the highest power of p dividing TΓ|Unp . If no such
cyclic pattern is clear, then we simply list the first few terms of the sequence in parentheses.

Class Group p = 2 p = 3 p = 5 p = 7 p = 11
1A 1 11→ 3 5→ 2 2→ 1 1→ 1 1→ 1
2A 2+ 11→ 3 (3, 5, 9, 9, 11) (1, 2, 3, 5, 5) 1→ 1 0→ 0
2B 2 11→ 3 1→ 0 0→ 0 0→ 0 0→ 0
3A 3+ 5→ 1 5→ 2 (1, 2, 3, 5, 5) 0→ 0 0→ 0
3B 3 2→ 0 5→ 2 0→ 0 0→ 0 0→ 0
3C 3|3 3→ 3, 0 ∞ 0→ 1, 0 1→ 1 0→ 1, 0
4A 4+ 11→ 3 1→ 0 0→ 0 0→ 0 0→ 0
4B 4|2+ ∞ 1→ 0 1→ 1 1→ 1 0→ 1, 0
4C 4 ∞ 0→ 0 0→ 0 0→ 0 0→ 0
4D 4|2 ∞ 1→ 0 0→ 0 0→ 0 0→ 0
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5A 5+ 3→ 2, 1, 3, 0 1→ 0 2→ 1 0→ 0 0→ 0
5B 5 1→ 0 1→ 0 2→ 1 0→ 0 0→ 0
6A 6+ 5→ 1 (3, 5, 9, 9, 11) 1→ 1 0→ 0 0→ 0
6B 6+6 2→ 0 1→ 0 0→ 0 0→ 0 0→ 0
6C 6+3 5→ 1 1→ 0 0→ 0 0→ 0 0→ 0
6D 6+2 2→ 0 (3, 5, 9, 9, 11) 0→ 0 0→ 0 0→ 0
6E 6 2→ 0 1→ 0 0→ 0 0→ 0 0→ 0
6F 6|3 3→ 3, 0 ∞ 0→ 1, 0 0→ 0 0→ 0
7A 7+ 2→ 0 1→ 0 1→ 1 1→ 1 0→ 0
7B 7 2→ 0 0→ 0 0→ 0 1→ 1 0→ 0
8A 8+ 7→ 3 0→ 0 0→ 0 0→ 0 0→ 0
8B 8|2+ ∞ 1→ 0 0→ 0 0→ 0 0→ 0
8C 8|4+ ∞ 0→ 1, 0 1→ 1 0→ 1, 0 0→ 0
8D 8|2 ∞ 0→ 0 0→ 0 0→ 0 0→ 0
8E 8 ∞ 0→ 0 0→ 0 0→ 0 0→ 0
8F 8|4 ∞ 1→ 0 0→ 1, 0 0→ 0 0→ 0
9A 9+ 1→ 0 5→ 2 0→ 0 0→ 0 0→ 0
9B 9 0→ 0 ∞ 0→ 0 0→ 0 0→ 0
10A 10+ 3→ 2, 1, 3, 0 1→ 0 (1, 2, 3, 5, 5) 0→ 0 0→ 0
10B 10+5 3→ 2, 1, 3, 0 0→ 0 0→ 0 0→ 0 0→ 0
10C 10+2 1→ 0 0→ 0 (1, 2, 3, 5, 5) 0→ 0 0→ 0
10D 10+10 1→ 0 1→ 0 0→ 0 0→ 0 0→ 0
10E 10 1→ 0 0→ 0 0→ 0 0→ 0 0→ 0
11A 11+ 1→ 1, 0 0→ 0 0→ 0 0→ 0 1→ 1
12A 12+ 5→ 1 1→ 0 0→ 0 0→ 0 0→ 0
12B 12+4 2→ 0 1→ 0 0→ 0 0→ 0 0→ 0
12C 12|2+ ∞ 1→ 0 0→ 0 0→ 0 0→ 0
12D 12|3+ 3→ 3, 0 ∞ 0→ 1, 0 0→ 0 0→ 0
12E 12+3 ∞ 0→ 0 0→ 0 0→ 0 0→ 0
12F 12|2+6 ∞ 1→ 0 0→ 0 0→ 0 0→ 0
12G 12|2+2 ∞ 1→ 0 0→ 0 0→ 0 0→ 0
12H 12+12 2→ 0 0→ 0 0→ 0 0→ 0 0→ 0
12I 12 ∞ 0→ 0 0→ 0 0→ 0 0→ 0
12J 12|6 ∞ ∞ 0→ 0 0→ 0 0→ 0
13A 13+ 2→ 0 1→ 0 0→ 0 0→ 0 0→ 0
13B 13 1→ 0 0→ 0 0→ 0 0→ 0 0→ 0
14A 14+ 2→ 0 1→ 0 0→ 0 1→ 1 0→ 0
14B 14+7 2→ 0 1→ 0 0→ 0 0→ 0 0→ 0
14C 14+14 2→ 0 0→ 0 0→ 0 0→ 0 0→ 0
15A 15+ 1→ 0 1→ 0 (1, 2, 3, 5, 5) 0→ 0 0→ 0
15B 15+5 1→ 0 1→ 0 0→ 0 0→ 0 0→ 0
15C 15+15 0→ 0 1→ 0 0→ 0 0→ 0 0→ 0
15D 15|3 1→ 0 ∞ 0→ 1, 0 0→ 0 0→ 0
16A 16|2+ ∞ 0, 1→ 0 0→ 1, 0 0→ 0 0→ 0
16B 16 ∞ 0→ 0 0→ 0 0→ 0 0→ 0
16C 16+ 4, 6→ 3 0→ 0 0→ 0 0→ 0 0→ 0
17A 17+ 1→ 0 0, 1→ 0 0→ 0 0→ 0 0→ 0
18A 18+2 0→ 0 ∞ 0→ 0 0→ 0 0→ 0
18B 18+ 1→ 0 (3, 5, 9, 9, 11) 0→ 0 0→ 0 0→ 0
18C 18+9 1→ 0 1→ 0 0→ 0 0→ 0 0→ 0
18D 18 0→ 0 ∞ 0→ 0 0→ 0 0→ 0
18E 18+18 0→ 0 1→ 0 0→ 0 0→ 0 0→ 0
19A 19+ 1, 2→ 0 1→ 0 0→ 0 0→ 0 0→ 0
20A 20+ 3→ 2, 1, 3, 0 0→ 0 0→ 0 0→ 0 0→ 0
20B 20|2+ ∞ 1→ 0 1→ 1 0→ 0 0→ 0
20C 20+4 1→ 0 0→ 0 0→ 0 0→ 0 0→ 0
20D 20|2+5 ∞ 0, 1→ 0 0→ 0 0→ 0 0→ 0
20E 20|2+10 ∞ 1→ 0 0→ 0 0→ 0 0→ 0
20F 20+20 1→ 0 0→ 0 0→ 0 0→ 0 0→ 0
21A 21+ 1→ 0 1→ 0 0→ 0 0→ 0 0→ 0
21B 21+3 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
21C 21|3+ 0→ 0 ∞ 0→ 1, 0 1→ 1 0→ 0
21D 21+21 1→ 0 0→ 0 0→ 0 0→ 0 0→ 0
22A 22+ 1→ 1, 0 0→ 0 0→ 0 0→ 0 0→ 0
22B 22+11 1→ 1, 0 0→ 0 0→ 0 0→ 0 0→ 0
23AB 23+ 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
24A 24|2+ ∞ 1→ 0 0→ 0 0→ 0 0→ 0
24B 24+ 3→ 1 0→ 0 0→ 0 0→ 0 0→ 0
24C 24+8 1→ 0 0→ 0 0→ 0 0→ 0 0→ 0
24D 24|2+3 ∞ 0→ 0 0→ 0 0→ 0 0→ 0
24E 24|6+ ∞ ∞ 0→ 0 0→ 0 0→ 0
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24F 24|4+6 ∞ 1→ 0 (0, 0, 1, 2, 2) 0→ 0 0→ 0
24G 24|4+2 ∞ 0→ 1, 0 0→ 0 0→ 0 0→ 0
24H 24|2+12 ∞ 0→ 0 0→ 0 0→ 0 0→ 0
24I 24+24 1→ 0 0→ 0 0→ 0 0→ 0 0→ 0
24J 24|12 ∞ ∞ 0→ 0 0→ 0 0→ 0
25A 25+ 0→ 0 0→ 0 2→ 1 0→ 0 0→ 0
26A 26+ 2→ 0 0, 1→ 0 0→ 0 0→ 0 0→ 0
26B 26+26 1→ 0 0→ 0 0→ 0 0→ 0 0→ 0
27AB 27+ 0→ 0 2→ 2 0→ 0 0→ 0 0→ 0
28A 28|2+ ∞ 0, 1→ 0 0→ 0 1→ 1 0→ 0
28B 28+ 2→ 0 1→ 0 0→ 0 0→ 0 0→ 0
28C 28+7 ∞ 0→ 0 0→ 0 0→ 0 0→ 0
28D 28|2+14 ∞ 0→ 0 0→ 0 0→ 0 0→ 0
29A 29+ 1→ 0 0→ 0 0→ 0 0→ 0 0→ 0
30A 30+6, 10, 15 0→ 0 1→ 0 0→ 0 0→ 0 0→ 0
30B 30+ 1→ 0 1→ 0 1→ 1 0→ 0 0→ 0
30C 30+3, 5, 15 1→ 0 0→ 0 0→ 0 0→ 0 0→ 0
30D 30+5, 6, 30 1→ 0 0→ 0 0→ 0 0→ 0 0→ 0
30E 30|3+10 1→ 0 ∞ 0→ 1, 0 0→ 0 0→ 0
30F 30+2, 15, 30 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
30G 30+15 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
31AB 31+ 0→ 0 1→ 0 0→ 0 0→ 0 0→ 0
32A 32+ 2, 3, 5→ 3 0→ 0 0→ 0 0→ 0 0→ 0
32B 32|2+ ∞ 0→ 0 0→ 0 0→ 0 0→ 0
33A 33+11 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
33B 33+ 1→ 0 0→ 0 0→ 0 0→ 0 0→ 0
34A 34+ 1→ 0 0, 1→ 0 0→ 0 0→ 0 0→ 0
35A 35+ 1→ 0 0→ 0 1→ 1 0→ 0 0→ 0
35B 35+35 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
36A 36+ 1→ 0 1→ 0 0→ 0 0→ 0 0→ 0
36B 36+4 0→ 0 ∞ 0→ 0 0→ 0 0→ 0
36C 36|2+ ∞ 1→ 0 0→ 0 0→ 0 0→ 0
36D 36+36 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
38A 38+ 1, 2→ 0 0→ 0 0→ 0 0→ 0 0→ 0
39A 39+ 0→ 0 1→ 0 0→ 0 0→ 0 0→ 0
39B 39|3+ 0→ 0 ∞ 0→ 0 0→ 0 0→ 0
39CD 39+39 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
40A 40|4+ ∞ 0, 1→ 0 (1, 2, 3, 5, 5) 0→ 0 0→ 0
40B 40|2+ ∞ 0, 1→ 0 0→ 0 0→ 0 0→ 0
40CD 40|2+20 ∞ 0→ 0 0→ 0 0→ 0 0→ 0
41A 41+ 1→ 0 0→ 0 0→ 0 0→ 0 0→ 0
42A 42+ 1→ 0 1→ 0 0→ 0 0→ 0 0→ 0
42B 42+6, 14, 21 1→ 0 0→ 0 0→ 0 0→ 0 0→ 0
42C 42|3+7 0→ 0 ∞ 0→ 0 0→ 0 0→ 0
42D 42+3, 14, 42 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
44AB 44+ 1→ 1, 0 0→ 0 0→ 0 0→ 0 0→ 0
45A 45+ 0→ 0 1→ 0 0→ 0 0→ 0 0→ 0
46AB 46+23 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
46CD 46+ 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
47AB 47+ 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
48A 48|2+ ∞ 0, 1→ 0 0→ 0 0→ 0 0→ 0
50A 50+ 0→ 0 0→ 0 (1, 2, 3, 5, 5) 0→ 0 0→ 0
51A 51+ 1→ 0 0, 1→ 0 0→ 0 0→ 0 0→ 0
52A 52|2+ ∞ 0→ 0 0→ 0 0→ 0 0→ 0
52B 52|2+26 ∞ 0→ 0 0→ 0 0→ 0 0→ 0
54A 54+ 0→ 0 (1, 2, 4, 8, 8) 0→ 0 0→ 0 0→ 0
55A 55+ 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
56A 56+ 1→ 0 0→ 0 0→ 0 0→ 0 0→ 0
56BC 56|4+14 ∞ 0→ 0 0→ 0 0→ 0 0→ 0
57A 57|3+ 0→ 0 ∞ 0→ 0 0→ 0 0→ 0
59AB 59+ 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
60A 60|2+ ∞ 1→ 0 0→ 0 0→ 0 0→ 0
60B 60+ 1→ 0 0→ 0 0→ 0 0→ 0 0→ 0
60C 60+4, 15, 60 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
60D 60+12, 15, 20 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
60E 60|2+5, 6, 30 ∞ 0, 1→ 0 0→ 0 0→ 0 0→ 0
60F 60|6+10 ∞ ∞ 0→ 0 0→ 0 0→ 0
62AB 62+ 0→ 0 0, 1→ 0 0→ 0 0→ 0 0→ 0
66A 66+ 1→ 0 0→ 0 0→ 0 0→ 0 0→ 0
66B 66+6, 11, 66 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
68A 68|2+ ∞ 0→ 0 0→ 0 0→ 0 0→ 0
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69AB 69+ 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
70A 70+ 1→ 0 0→ 0 0→ 0 0→ 0 0→ 0
70B 70+10, 14, 35 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
71AB 71+ 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
78A 78+ 0→ 0 0, 1→ 0 0→ 0 0→ 0 0→ 0
78BC 78+6, 26, 39 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
84A 84|2+ ∞ 0, 1→ 0 0→ 0 0→ 0 0→ 0
84B 84|2+6, 14, 21 ∞ 0→ 0 0→ 0 0→ 0 0→ 0
84C 84|3+ 0→ 0 ∞ 0→ 0 0→ 0 0→ 0
87AB 87+ 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
88AB 88|2+ ∞ 0→ 0 0→ 0 0→ 0 0→ 0
92AB 92+ 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
93AB 93|3+ 0→ 0 ∞ 0→ 0 0→ 0 0→ 0
94AB 94+ 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
95AB 95+ 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
104AB 104|4+ ∞ 0→ 0 0→ 0 0→ 0 0→ 0
105A 105+ 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
110A 110+ 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0
119AB 119+ 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0

B Power maps

For each p ∈ {3, 5, 7, 11} we record here the structure of the collection of groups whose Haupt-
moduln are p-adically annihilated by Up (the case p = 2 appears as Fig. 1.1 in the introduction).
In each diagram below, we write the groups Γ such that TΓ is p-adically annihilated by Up but
TΓ|Up 6= 0, and all of the powers of such groups. Solid lines indicate power maps, groups in
white boxes satisfy TΓ|Up = 0, and groups in black boxes are not p-adically annihilated by Up
at all.

1

3 2+ 3+

9 9+ 6+2 4|2+ 6+

27+ 18+2 18+ 12|2+2 8|4+

54+ 24|4+2

Figure B.1. Power maps for 3-adically annihilated Hauptmoduln.

1

3+ 5+ 2+ 7+ 5 3|3 2 3

6+ 15+ 10+ 4|2+ 35+ 10+2 25+ 15|321|3+ 6|3 10+10 4+ 4 4|2 6+6

30+ 20|2+ 8|4+ 50+ 30|3+10 12|3+ 8+ 8|4 12|2+6

40|4+ 16|2+

24|4+6

Figure B.2. Power maps for 5-adically annihilated Hauptmoduln.
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1

3|3 7+ 2+ 7

21|3+ 14+ 4|2+

28|2+ 8|4+

Figure B.3. Power maps for 7-adically anni-

hilated Hauptmoduln

1

3|3 2+ 11+

4|2+

Figure B.4. Power maps for 11-adically anni-

hilated Hauptmoduln
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