
CO-RANK 1 ARITHMETIC SIEGEL–WEIL

RYAN C. CHEN

Abstract. This is an unofficial combined version of our four-paper sequence “Co-rank 1 Arithmetic

Siegel–Weil I–IV”. We prove the arithmetic Siegel–Weil formula in co-rank 1, for Kudla–Rapoport

special cycles on exotic smooth integral models of unitary Shimura varieties of arbitrarily large even

arithmetic dimension. We also propose a construction for arithmetic special cycle classes associated

to possibly singular matrices of arbitrary co-rank. Our arithmetic Siegel–Weil formula implies that

degrees of Kudla–Rapoport arithmetic special 1-cycles are encoded in the first derivatives of unitary

Eisenstein series Fourier coefficients.

The key input is a new limiting method at all places. On the analytic side, the limit relates

local Whittaker functions on different groups. On the geometric side at nonsplit non-Archimedean

places, the limit relates degrees of 0-cycles on Rapoport–Zink spaces and local contributions to

heights of 1-cycles in mixed characteristic.
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Preliminary

1. Introduction

This is an unofficial combined version of our four-paper sequence “Co-rank 1 Arithmetic Siegel–

Weil I–IV” [Che24a; Che24b; Che24c; Che24d].

The landmark work of Gross and Zagier [GZ86] showed that Néron–Tate heights of Heegner

points on elliptic curves over Q are encoded in the first central derivatives of associated Rankin–

Selberg L-functions. After the work of Gross and Keating [GK93] on arithmetic intersection num-

bers for modular correspondences, Kudla proposed to recast such formulas in the language of special

cycles on higher-dimensional Shimura varieties. This was originally formulated for integral models

of orthogonal Shimura varieties in low dimensions by Kudla [Kud97a; Kud97b; Kud04] and the sub-

sequent work of Kudla and Rapoport [KR99; KR00], where they pioneered the moduli definition

of special cycles on integral models. Later, the attention was shifted to unitary Shimura varieties

by Kudla–Rapoport in [KR11; KR14]. Along with other closely related predictions about special

cycles (e.g. modularity of generating series), these ideas are now called Kudla’s program. Kudla’s

program has played a role in a range of works, such as Gross–Zagier formulas on Shimura curves

[YZZ13], the averaged Colmez conjecture [AGHMP18; YZ18], the arithmetic fundamental lemma

[Zha21], results on the Beilinson–Bloch conjecture [LL21], and Picard rank jumps for K3 surfaces

[SSTT22]. We refer to Li’s excellent surveys [Li23; Li24] for more.

Our work is about arithmetic Siegel–Weil formulas in Kudla’s program [Kud04, Problem 6],

which (conjecturally) relate the first derivatives of Siegel Eisenstein series for unitary (resp. sym-

plectic) groups with “arithmetic theta series” formed from special cycles on integral models of

unitary (resp. orthogonal) Shimura varieties (see (1.3.3) below). These are closely parallel to the

classical (resp. geometric) Siegel–Weil formulas, which state that special values of Eisenstein series

encode representation numbers (resp. complex degrees) for lattices (resp. complex special cycles

on Shimura varieties).

Our main results are stated in Section 1.4. Our proof is local in nature; we deduce our global

arithmetic Siegel–Weil formula by formulating and proving key “local arithmetic Siegel–Weil for-

mulas” at all places.

We now outline the rest of the introduction. Section 1.2 contains some background on classical

and geometric Siegel–Weil. This is for comparison with arithmetic Siegel–Weil, and helps us fix

needed notation. The material in Section 1.2 is mostly expository, but some of our formulations may

be new, particularly in our normalizations for Eisenstein series. The same normalization choices

play an amplified role in our main arithmetic Siegel–Weil results. We also mention other results

(comparison of complex volume and degrees of complex zero cycles to Eisenstein series) which seem

to be new or at least not explicit in the literature; see discussion following (1.2.6) and (1.2.10).

Section 1.3 contains background on arithmetic Siegel–Weil formulas, and a brief overview of

our main results.Section 1.4 contains more detailed statements of our main results, and Section 1.5

contains a comparison with existing literature on arithmetic Siegel–Weil. Sections 1.7 to 1.9 contain

an overview of the new ideas in the formulation and proofs of our main theorems. Section 1.10

outlines the structure of the remainder of this paper.
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1.1. Eisenstein series. In our work, we focus on the unitary/Hermitian case. For the introduction,

fix an imaginary quadratic field F/Q with ring of integers OF and odd discriminant ∆. Given

m ∈ Z≥0 and an even integer n ∈ Z, we consider the (normalized) Siegel Eisenstein series

E∗(z, s)◦n := Λm(s)
◦
n

∑
(
a b
c d

)
∈P1(Z)\SU(m,m)(Z)

det(y)s−s0

det(cz + d)n| det(cz + d)|2(s−s0)
(1.1.1)

for the group

U(m,m) :=

{
h ∈ ResOF /ZGL2m : th

(
0 1m

−1m 0

)
h =

(
0 1m

−1m 0

)}
(1.1.2)

where Λm(s)
◦
n is the normalizing factor

Λm(s)
◦
n :=

(2π)m(m−1)/2

(−2πi)nm
πm(−s+s0)|∆|m(m−1)/4+⌊m/2⌋(s+s0) (1.1.3)

·

m−1∏
j=0

Γ(s− s0 + n− j) · L(2s+m− j, ηj+n)

 .

In (1.1.2), the notation 1m stands for them×m identity matrix, we wrote SU(m,m) ⊆ U(m,m) for

the determinant 1 subgroup, and we set P1 := P ∩SU(m,m) for the Siegel parabolic P ⊆ U(m,m)

(consisting of m×m block upper triangular matrices). The variable s ∈ C is a complex parameter,

we set s0 = (n − m)/2, and the element z = x + iy lies in Hermitian upper-half space (i.e.

x ∈ Hermm(R) and y ∈ Hermm(R)>0; the latter means that y is positive definite).1 The symbol η

denotes the quadratic character associated to F/Q (via class field theory). The sum in (1.1.1) is

convergent for Re(s) > m/2, and admits meromorphic continuation to all s ∈ C. When m = 1, the

expression in (1.1.1) is a classical Eisenstein series on the usual upper-half plane.

The normalized Eisenstein series has a symmetric functional equation

E∗(z, s)◦n = (−1)m(m−1)(n−m−1)/2E∗(z,−s)◦n, (1.1.4)

see Section 17.1. Our definition of the normalizing factor Λm(s)
◦
n is motivated by symmetry of

global and local functional equations, along with certain local special value formulas; see Sections 13

to 17 for further discussion. The function Λm(s)
◦
n should be closely related with the L-function of

an Artin–Tate motive attached to the group U(m,m), in the sense of Gross [Gro97] (see [BH21,

Remark 1.1.1]).

Given T ∈ Hermm(Q), the Eisenstein series E∗(z, s)◦n has T -th Fourier coefficient

E∗
T (y, s)

◦
n := 2m(m−1)/2|∆|−m(m−1)/4

∫
Hermm(Z)\Hermm(R)

E∗(z, s)◦ne
−2πitr(Tz) dx (1.1.5)

1Here, the notation Hermm denotes a scheme over SpecZ, e.g. Hermm(R) denotes m × m complex Hermitian

matrices, and Hermm(Q) denotes m×m Hermitian matrices with entries in F .
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for z = x + iy in Hermitian upper-half space, where this integral is taken with respect to the

Euclidean measure2 on Hermm(R). The integral is convergent for Re(s) > m/2, and admits mero-

morphic continuation to all s ∈ C. When detT ̸= 0, there is a factorization into normalized local

Whittaker functions

E∗
T (y, s)

◦
n =W ∗

T,∞(y, s)◦n
∏
p

W ∗
T,p(s)

◦
n (1.1.6)

over all places, see Part 5.

For example, if n = 2 and m = 1, we have

W ∗
T,p(s)

◦
2 = pvp(T )(s+1/2)σ−2s(p

vp(T )) σs(r) :=
∑
d|r

ds (1.1.7)

W ∗
T,∞(y, s)◦2 = Γ(s− 1/2)−1|4πTy|s−1/2

∫ ∞

a
e−4π|T |yu(u± 1)s+1/2us−3/2

for any nonzero T ∈ Z, where a = 0 and the sign ± is + (resp. a = 1 and the sign ± is −) if T > 0

(resp. if T < 0). Here W ∗
T,∞(y, s)◦2 (resp. W ∗

T,p(s)
◦
2) is a certain normalized Archimedean (resp.

non-Archimedean) local Whittaker function.

1.2. Classical and geometric Siegel–Weil. Let V be an n-dimensional F -vector space, equipped

with a non-degenerate Hermitian pairing (−,−). Set G = U(V ) and assume n > 0. Fix a full-

rank OF -lattice L ⊆ V . For simplicity, we assume in the introduction that L is self-dual.3 Write

KL,f ⊆ G(Af ) for the stabilizer of L⊗Z Ẑ, where Af denotes the finite adèle ring of Q.

First consider the case where V is positive definite. Since we assumed L is self-dual, this forces

n ≡ 0 (mod 4) (by the global product formula for local invariants of Hermitian spaces). Given any

positive definite Hermitian OF -lattice L, we set

ZT,L := {x ∈ Lm : (x, x) = T}, (1.2.1)

where (x, x) denotes the Gram matrix4 of x. When m ≤ n, we have

2Λn(0)
◦
n =

∑
OF -lattices L

self-dual, rank n,
positive definite

1

|Aut(L)|
= #[G(Q)\(G(Af )/KL,f )] (1.2.2)

2Λn(0)
◦
n

κΛm(s0)◦n
E∗
T (y, s0)

◦
n =

∑
OF -lattices L

self-dual, rank n,
positive definite

|ZT,L|
|Aut(L)|

for any T ∈ Hermm(Q), (1.2.3)

where κ = 2 (resp. κ = 1) if m = n (resp. if m < n). The sums run over isomorphism classes of

positive definite rank n self-dual OF -lattices, the notation Aut(L) means the (unitary) automor-

phism group of L. The symbols #[−] and | − | mean groupoid and set cardinality, respectively.

2The factor 2m(m−1)/2|∆|−m(m−1)/4 disappears in the (usual) equivalent adèlic formulation, upon taking a certain

self-dual Haar measure. The adèlic formulations of (1.1.1) and (1.1.5) are used in Section 13.
3We always mean self-dual for the bilinear trace pairing trF/Q(v, w) unless otherwise specified; see conventions in

Section 2.2.
4If x is the m-tuple [x1, . . . , xm], the notation (x, x) will mean the matrix with i, j-th entry (xi, xj). We often

write e.g. [x1, . . . , xm] instead of (x1, . . . , xm) for tuples, to avoid confusion with Hermitian pairings (−,−).
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That is, we have
2Λn(0)

◦
n

κΛm(s0)◦n
E∗(z, s0)

◦
n =

∑
OF -lattices L

self-dual, rank n,
positive definite

1

|Aut(L)|
ΘL(z) (1.2.4)

which re-expresses the Eisenstein series at s = s0 as a weighted sum of theta series for the lattices

L.
Equations (1.2.2) and (1.2.3) are special cases of (unitary analogues of) the classical Siegel mass

formula and Siegel–Weil formula respectively. For (1.2.2), see Proposition 21.2.1. Equation (1.2.3)

follows from [Ich04, Proposition 6.2], [Ich07, Theorem 1.1], and [Yam11, Theorem 2.2] (in combi-

nation with (1.2.2)).

Next, consider the case where V has arbitrary signature (n−r, r). Since L was assumed self-dual,

this forces n ≡ 2r (mod 4). There is an associated Hermitian symmetric domain D which param-

eterizes maximal negative definite subspaces of the complex Hermitian space VR. For sufficiently

small open compact Kf ⊆ KL,f (so that we have manifolds instead of orbifolds, for simplicity),

there is an associated complex Shimura variety

ShKf ,C(G) = [G(Q)\(D ×G(Af )/Kf )] (1.2.5)

of dimension (n−r)r (analytification suppressed from notation). In the signature (n, 0) and (n−1, 1)
cases respectively, we have “geometric Siegel mass formulas”

2Λn(0)
◦
n =

vol(ShKf ,C(G))

[KL,f : Kf ]
− 2Λn(0)

◦
n =

vol(ShKf ,C(G))

[KL,f : Kf ]
(1.2.6)

where vol(ShKL,f ,C(G)) is the volume with respect to the Chern form of a certain dual tautological

bundle. The case of signature (n − 1, 1) may be extracted from [BH21, Theorem A], see Proposi-

tion 21.2.3.5 The case of signature (n, 0) is an equivalent reformulation of the classical Siegel mass

formula (1.2.2): if we allow the (stacky) level Kf = KL,f , then there is a canonical equivalence of

groupoids

ShKL,C(G)
∼=

{
Hermitian OF -lattices L which are

self-dual and signature (n, 0)

}
(1.2.7)

in that case.

In geometric Siegel–Weil formulas, the sets ZT,L (from classical Siegel–Weil) are replaced by

special cycles ZT,C over the Shimura variety, and the theta series ΘL(z) become generating series

of special cycles. One can define ZT,C by the complex uniformization

ZT,C :=

[
G(Q)\

( ∐
x∈Vm

(x,x)=T

D(x∞)×D(xf )

)]
(1.2.8)

where D(x) ⊆ D is the closed complex submanifold consisting of those complex lines perpendicular

to all elements of the m-tuple x, and

D(xf ) := {g ∈ G(Af )/Kf : g−1xi ∈ L⊗Z Ẑ for all xi ∈ xf} ⊆ G(Af )/Kf . (1.2.9)

5In Proposition 21.2.3, note that we took vol(−) with respect to the tautological bundle. Here we are taking

volume with respect to the dual bundle, which produces the minus sign in (1.2.6).
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Here x∞ and xf denote the image of x in V (R)m and V (Af )m, respectively. The definition in (1.2.8)

is (a reformulation of) a definition due to Kudla [Kud04] (there for GSpin), with unitary analogue

as in [Liu11, §3]. We call D(x∞) an Archimedean local special cycle and D(xf ) an “away-from-∞”

local special cycle. There is a natural map ZT,C → ShKf ,C, which is a disjoint union of closed

immersions of complex manifolds after possibly shrinking Kf .

A geometric Siegel–Weil formula for signature (n− 1, 1) is an identity of the shape

− 2Λn(0)
◦
n

κΛm(s0)◦n
E∗
T (y, s0)

◦
n =

vol(ZT,C)
[KL,f : Kf ]

. (1.2.10)

for m ≤ n − 1 (so κ = 1). In the case of signature (n, 0), the expression in (1.2.10) (without the

minus sign on the left) is an equivalent reformulation of the classical Siegel–Weil formula (1.2.3):

if we allow the (stacky) level Kf = KL,f , there is a canonical equivalence of groupoids

ZT,C ∼=

{
pairs (L, x), where L is a self-dual Hermitian OF -lattice
of signature (n, 0) and x ∈ Lm is an m-tuple with (x, x) = T

}
. (1.2.11)

Our presentation of the geometric Siegel–Weil formula in (1.2.10) may be nonstandard. Its ap-

pearance is intended to highlight the similarity with our formulation of arithmetic Siegel–Weil in

(1.3.3).

Strictly speaking, geometric Siegel–Weil formulas in literature typically restrict to V satisfying

Weil’s convergence condition (meaning V anisotropic or m < n − 1 in the signature (n − 1, 1)

Hermitian setup), see remarks following [Kud04, Theorem 4.1] and [Li24, Theorem 3.6.1]. It is also

typical to phrase geometric Siegel–Weil formulas in terms of “coherent” Eisenstein series, while

our E∗(z, s)◦n is described in terms of an incoherent adèlic Hermitian space (positive definite at

∞ and self-dual at all finite places), see Part 5. Outside of those cases available in the literature,

geometric Siegel–Weil formulas may need additional care. For example, when m = 1 and n = 2

and T = 0 (which is essentially about “complex volume of modular curve”), the formula in (1.2.10)

is only valid up to a non-holomorphic correction term 2hF
wF
· 1
8πy on the left, where hF (resp. wF )

is the class number of (resp. number of roots of unity in) OF . In this case, the right-hand side is
2hF
wF
· ζ(−1)

2 = −hF
12wF

.

We will need the following geometric Siegel–Weil result which does not seem to be covered by

the literature discussed in the previous paragraph. We prove (1.2.10) when T is nonsingular of rank

m = n−1, see Proposition 21.1.1 (also complex uniformization in Section 12.3, as well as (22.1.2));

in that case, ZT,C is 0 dimensional. For example, when n = 2 and O×
F = {±1}, the special cycle

ZT,C can be described in terms of Hecke translates of CM elliptic curves Section 22.2, and (1.2.10)

is then the (well-known) statement that the T -th Hecke correspondence (over the modular curve)

has bidegree

− 1

hF

2Λ2(0)
◦
2

Λ1(1/2)◦2
E∗
T (y, 1/2)

◦
2 = σ1(T ) (1.2.12)

for T ∈ Z>0. The extra factor of hF accounts for multiple connected components in the Shimura

variety, see Section 22.2.

We remark that our proof of (1.2.10) (for T nonsingular of rank m = n−1) is inspired by [LZ22a,

Remark 4.6.2], and may be carried out using either complex or non-Archimedean (Rapoport–Zink)
10



uniformization. We need that case of (1.2.10) as an ingredient for our main arithmetic Siegel–Weil

results.

1.3. Arithmetic Siegel–Weil. Arithmetic Siegel–Weil formulas predict that the derivative of

E∗
T (y, s)

◦
n at s = s0 should encode arithmetic degrees of special cycles on integral models of Shimura

varieties.

Since the work of Kudla–Rapoport [KR14] (also Rapoport–Smithling–Zhang [RSZ21]), it has

been customary to consider special cycles Z(T )→M over (stacky) integral modelsM→ SpecOF
for Shimura varieties associated to G′ := ResF/QGm×U(V ), for signature (n−1, 1) non-degenerate

F/Q Hermitian spaces V with pairing (−,−). In this paper, we assume V contains a full-rank

self-dual6 OF -lattice and we takeM→ SpecOF to be the “exotic smooth” Rapoport–Smithling–

Zhang (RSZ) integral model of relative dimension n − 1 [RSZ21, §6].7 When n = 2, the stackM
is essentially a disjoint union of (stacky) modular curves (Example 3.2.2).

The stackM admits a moduli description: it parameterizes tuples (A0, ι0, λ0, A, ι, λ) where A0

and A are abelian schemes (dimensions 1 and n respectively) with OF -actions ι0 and ι, and with

compatible quasi-polarizations λ0 and λ. The datum (A0, ι0, λ0, A, ι, λ) satisfies a few additional

conditions, which we postpone to Section 3.1.

The moduli stackM carries a natural family of Hermitian OF -lattices

Lat→M Lat := HomOF
(A0, A). (1.3.1)

Given any T ∈ Hermm(Q), the associated Kudla–Rapoport special cycle Z(T ) →M is defined as

the substack

Z(T ) := {x ∈ Latm : (x, x) = T} ⊆ Latm (1.3.2)

consisting of m-tuples x with Gram matrix T . More precisely, see Section 3.3. This is in close

analogy with classical Siegel–Weil: there we considered OF -lattices varying in a given genus,8 and

here we are considering OF -lattices varying over the moduli stack M. In the complex fiber, the

special cycles Z(T )C recover the special cycles ZT,C appearing in (1.2.8), up to MK′
f ,C being a

finite cover of ShKf ,C(G) (for suitable K ′
f ); see Section 12.3. The morphism Z(T ) → SpecOF is

smooth of relative dimension n− 1− rank(T ) in the generic fiber over SpecF . If T is not positive

semi-definite, then Z(T ) is empty.

An arithmetic Siegel–Weil formula is an identity roughly of the shape

hF
wF

d

ds

∣∣∣∣
s=s0

2Λn(s− s0)◦n
κΛm(s)◦n

E∗
T (y, s)

◦
n

?
= v̂olÊ∨([Ẑ(T )]). (1.3.3)

6We always mean self-dual for the bilinear trace pairing trF/Q(v, w) unless otherwise specified; see conventions in

Section 2.2.
7Our assumption on V forces n ≡ 2 (mod 4). We allow a slightly more general setup in Section 3.1 for general

V , at the cost of throwing out finitely many primes (particularly the ramified primes when n is odd). This does not

affect the essential ideas of our method, which is local in nature.
8In our previous setup, this meant the set of isomorphism classes of positive definite rank n self-dual OF -lattices.
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Here we set κ = 1 (resp. κ = 2) if m ̸= n (resp. m = n). The right-hand side of (1.3.3) denotes an

arithmetic volume, which is a real number “defined” by an arithmetic intersection product

v̂olÊ∨([Ẑ(T )])“ := ”d̂eg([Ẑ(T )] · ĉ1(Ê∨)n−m) (1.3.4)

in an arithmetic Chow ring Ĉh∗(M)Q (roughly in the sense of Gillet–Soulé [GS87]) for a certain

metrized tautological bundle Ê∨ on M (the bundle Ê∨ is discussed in Section 4.3). The notation

[Ẑ(T )] indicates a class in Ĉhm(M)Q, which is expected to involve Z(T ) and some additional

Archimedean data (e.g. from a Green current on the complex Shimura variety), as appearing in

arithmetic intersection theory.

An expected application of arithmetic Siegel–Weil formulas is in the theory of arithmetic theta

lifting. One expects to form automorphic arithmetic theta series as generating series

Θ̂ =
∑
T

[Ẑ(T )]qT (1.3.5)

with “Fourier coefficients” [Ẑ(T )] valued in the arithmetic Chow group Ĉhm(M)Q. These should

be analogous to (weighted averages of) classical theta series, as in the classical Siegel–Weil formula

(1.2.4). In analogy with classical theta lifting, one expects to use Θ̂ as an integral kernel to lift

U(m,m) automorphic forms to elements of Ĉhm(M)Q. In analogy with the classical Rallis inner

product formula, one expects to use the doubling method and arithmetic Siegel–Weil formulas to

relate the derivative of an L-function with the arithmetic inner product of this arithmetic theta lift

[Kud04, Part III]. We refer to [KRY06; BHKRY20II; LL21; LL22] for some cases where versions of

this have been realized, with applications to Beilinson–Bloch. For modularity results on generating

series of arithmetic divisors, see [KRY06; BBK07; BHKRY20; Qiu22].

We sketched the arithmetic Siegel–Weil formula as a rough expectation, because precise for-

mulations remain open in the general case [Li24, Remark 4.4.2]. In general, it is necessary to

renormalize or modify the Eisenstein series in a way which is not completely understood. In fact,

our normalization on the left-hand side of (1.3.3) is already nonstandard (new). We are not certain

about this normalization for arithmetic Siegel–Weil in general, but our Theorem A (when m = n

for T of co-rank 1, and m = n − 1 for T nonsingular; more discussion appears below) provides

some evidence. The case of m = n and T nonsingular also holds, as can be extracted from known

theorems in the literature (see discussion following (1.4.9) below). Note also the similarity with

our formulation of classical and geometric Siegel–Weil (1.2.3) and (1.2.10).

In general, posing a good (precise) definition of the arithmetic cycle class [Ẑ(T )] is an open prob-

lem, especially for singular T (due to arithmetic-intersection-theoretic difficulties), and particularly

in the unitary case or over general totally real fields (due to a certain class number phenome-

non), see Section 4.4. Previous works used K-theoretic methods to define special cycle classes (e.g.

[KR14] and [HM22]), and the works by Feng–Yun–Zhang (moduli of shtukas) [FYZ21; FYZ24]

and Madapusi (Shimura varieties) [Mad23] have employed derived algebro-geometric methods to

define special cycle classes. As of now, these constructions do not incorporate the Archimedean

place, which would be needed for arithmetic intersection theory (e.g. there seems to be no “derived

arithmetic intersection theory” at the moment). Garcia and Sankaran have defined (Archimedean)
12



Green currents associated to singular T using the Mathai–Quillen theory of superconnections, but

there has been no proposal to combine this with the non-Archimedean theory.

We first propose a method to construct the arithmetic special cycle classes [Ẑ(T )] for arbitrary
T . Our proposed definition mixes the work of Garcia–Sankaran with K-theoretic methods for

positive characteristic contributions. Our construction may need adjustment on compactifications

of integral models, but we expect it to apply in already-compact situations (e.g. the Rapoport–

Smithling–Zhang [RSZ21] setup for CM extensions of totally real fields ̸= Q).

The first part of our main theorem (Theorem A(1)) is a proof of (1) the arithmetic Siegel–Weil

formula when m = n and T ∈ Hermn(Q) is singular of co-rank 1. Most known (fully global)

results concern special cycles Z(T ) → M which are empty in the generic fiber. These previous

results include the non-Archimedean Kudla–Rapoport conjectures (for T ∈ Hermn(Q) nonsingular)

proved by Li–Zhang [LZ22a] (and the ramified versions [HLSY23; LL22]), as well as the purely

Archimedean results of Liu [Liu11] and Garcia–Sankaran [GS19]. Our theorem is the first (fully

global) arithmetic Siegel–Weil result which involves mixed characteristic special cycles Z(T ) on

Shimura varieties of arbitrarily large dimension. We further discuss the comparison with previous

literature in Section 1.5.

We also prove (2) the arithmetic Siegel–Weil formula when m = n − 1 and T is nonsingular

(Theorem A(2)). This is very closely related with our theorem for singular T ∈ Hermn(Q) of

co-rank 1, as we explain further in Section 1.4. This theorem implies that both the first derivative

and the special value of a U(n − 1, n − 1) Eisenstein series at the non-central point s = s0 = 1/2

have geometric meaning; see discussion following Theorem A.

As a byproduct of our methods, we prove (3) a version of the arithmetic Siegel–Weil formula

(up to an volume constant which we did not calculate) for arbitrary m when T is nonsingular and

not positive-definite (corresponding to a “purely Archimedean” arithmetic intersection number)

(Theorem B). This purely Archimedean result is analogous to those in [GS19] (there in a situation

with compact Shimura varieties, which need not apply in the setup above), but our method of proof

is completely different and is insensitive to compactness.

More importantly, we propose and apply a new uniform strategy to prove (1), (2), and (3). This

is the key conceptual novelty in our work. Our strategy is a certain “local limiting method” at all

places, Archimedean and non-Archimedean. We further sketch this strategy in Section 1.7, and at

a finer level of detail in Section 1.9.

1.4. Results. We describe our global results in more detail, retaining the notation from Section 1.3.

First, we propose a new candidate definition of arithmetic cycle classes

[Ẑ(T )] := [Ẑ(T )H ] +
∑

p prime

[LZ(T )V ,p] ∈ Ĉhm(M)Q (1.4.1)

associated to arbitrary (possibly singular) T . Here, [Ẑ(T )H ] is intended to describe “horizontal”

contributions and LZ(T )V ,p is intended to describe “vertical” contributions.

In this paper, the vertical (positive characteristic) classes LZ(T )V ,p will be constructed in Sec-

tion 4.6. For each prime p, we give a (new) definition of an element LZ(T )V ,p ∈ grmMK ′
0(Z(T )Fp)Q

(“vertical”) lying in the dimension n − m graded piece of the Grothendieck group (tensor Q) of
13



coherent sheaves on Z(T )Fp
:= Z(T )×SpecZSpecFp. Our construction is based on a certain “p-local

linear invariance”, and is explained in Section 4.6.

As we explain in Section 4.5 of this paper, the class [Ẑ(T )H ] may be constructed using currents

gT,y (associated to T and allowed to vary with a parameter y ∈ Hermm(R)>0) satisfying a modified

current equation, i.e. that

− 1

2πi
∂∂gT,y + δZ(T )C ∧ [c1(Ê∨C )m−rank(T )] (1.4.2)

is represented by a smooth (m,m)-form. For such currents, we apply the proposal of [GS19, §5.4]
to the flat part9 Z(T )H of Z(T ).

For general T , there is no precise definition of [Ẑ(T )] which has been proposed in the prior

literature [Li24, Remark 4.4.2]. Our candidate definition may need modification on a compactifica-

tion, but we expect it to apply in already-compact situations (e.g. the Rapoport–Smithling–Zhang

[RSZ21] setup for CM extensions of totally real fields ̸= Q). In general, it may also be necessary

to modify the Green currents differently than in [GS19, Definition 4.7]; see discussion below.

Currents satisfying (1.4.2) were constructed by Garcia and Sankaran [GS19], using the Mathai–

Quillen theory of superconnections [GS19, (4.38)]. For their arithmetic Siegel–Weil results, how-

ever, they need a non “linearly invariant” modification of their current [GS19, Definition 4.7] (see

discussion below).

We choose to instead use the star-product approach of Kudla [Kud97a] (as formulated by Liu

for unitary groups [Liu11]) to define the currents gT,y for our arithmetic Siegel–Weil results. Tradi-

tionally, the star product approach was used for nonsingular T (or at least block diagonal T , with

diagonal entries 0 or nonsingular). In Section 12.4, we give a (new) linearly invariant modifica-

tion in the case of singular T ∈ Hermn(Q) with rank n − 1, which will appear in our arithmetic

Siegel–Weil result for singular T .

As part of the expected automorphic behavior of [Ẑ(T )], it is expected that these classes should

satisfy a certain “linear invariance” property for the action10 of GLm(OF ) on Hermitian matrices

T . We verify this for the classes we define: for any gT,y satisfying

gT,y = gtγTγ,γ−1ytγ−1 , (1.4.3)

we show

[Ẑ(T )] = [Ẑ(tγTγ)] (1.4.4)

where [Ẑ(T )] is formed with respect to y and [Ẑ(tγTγ)] is formed with respect to γ−1ytγ−1. In

fact, we prove refined results: the vertical part at each prime p is linearly invariant on the level

of Grothendieck groups (4.6.11), and the horizontal part is linear invariant on its own Section 4.5.

The currents gT,y appearing in our main arithmetic Siegel–Weil results do satisfy the linear in-

variance property in (1.4.3); see Section 12.4. Note that the Garcia–Sankaran Green currents in

9Given an algebraic stack X over a Dedekind domain R, its flat part or horizontal part of XH is the largest closed

substack XH ⊆ X which is flat over SpecR. The stack XH is also the scheme-theoretic image of the generic fiber of

X . Given a formal algebraic stack X over Spf R for a complete discrete valuation ring R, its flat part or horizontal

part XH is the largest closed substack XH ⊆ X which is flat over Spf R (in the sense discussed in Section 11.7).
10For any γ ∈ GLm(OF ) and any Hermitian matrix T ∈ Hermm(Q), we say e.g. that T and tγTγ are GLm(OF )-

equivalent, and that they lie in the same GLm(OF )-equivalence class.
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[GS19, (4.38)] also satisfy the same linear invariance property (but the modified currents in [GS19,

Definition 4.7] do not).

Due to non-properness ofM→ SpecOF in general, one should likely modify [Ẑ(T )] on a suitable

compactification of M. If Z(T ) → SpecOF is proper, however, we consider certain “arithmetic

degrees without boundary contributions” (a real number)

d̂eg([Ẑ(T )] · ĉ1(Ê∨)n−m) :=
(∫

MC

gT,y ∧ c1(Ê∨C )n−m
)

(1.4.5)

+ d̂eg((Ê∨)n−rank(T )|Z(T )H )

+
∑

p prime

degFp
(LZ(T )V ,p · (E∨)n−m) log p

conditional on convergence of the integral, for a certain metrized tautological bundle Ê on M
(Section 4.1) (we do check convergence of the integral in the settings of our arithmetic Siegel–Weil

results). The middle term is mixed characteristic in nature: for rank(T ) = n−1, it is (essentially) a

weighted sum of Faltings heights of abelian varieties (Remark 22.1.4). For proper Z(T )→ OF , the
quantity in (1.4.5) should coincide with the arithmetic degree (without boundary contributions) of

a version of [Ẑ(T )] on any reasonable compactification ofM.

Our main theorems concern the T -th Fourier coefficients E∗
T (y, s)

◦
n of E∗(z, s)◦n. As above, we

write hF (resp. wF ) for the class number of (resp. number of roots of unity in) OF . The following

is our main global theorem.

Theorem A (Co-rank 1 arithmetic Siegel–Weil). Assume the prime 2 splits in OF .

(1) For any T ∈ Hermn(Q) with rank(T ) = n− 1 and any y ∈ Hermn(R)>0, we have

hF
wF

d

ds

∣∣∣∣
s=0

E∗
T (y, s)

◦
n = d̂eg([Ẑ(T )]). (1.4.6)

(2) For any T ♭ ∈ Hermn−1(Q) with detT ♭ ̸= 0 and any y♭ ∈ Hermn−1(R)>0, we have

2
hF
wF

d

ds

∣∣∣∣
s=0

(
Λn(s)

◦
n

Λn−1(s+ 1/2)◦n
E∗
T ♭(y

♭, s+ 1/2)◦n

)
= d̂eg([Ẑ(T ♭) · ĉ1(Ê∨)). (1.4.7)

Note that Theorem A(1) concerns the central derivative of a U(n, n) Eisenstein series, while part

Theorem A(2) concerns a non-central derivative of a U(n − 1, n − 1) Eisenstein series. For n ≡ 0

(mod 4), Theorem A(1) also holds in the sense that there is no self-dual OF -lattice of signature

(n− 1, 1) and the right-hand side is 0 Remark 22.1.3.

Remark 1.4.1. In the situation of Theorem A(2), there is also a “geometric Siegel–Weil formula”

when we evaluate

2
hF
wF

Λn(s)
◦
n

Λn−1(s+ 1/2)◦n
E∗
T ♭(y

♭, s+ 1/2)◦n (1.4.8)

at s = 0; the resulting expression is exactly −degCZ(T ♭)C (negative degree of complex fiber

Z(T ♭)C, which is a proper and quasi-finite Deligne–Mumford stack over SpecC). In other words,

both the special value and the first derivative at s = 1/2 of the U(n − 1, n − 1) Eisenstein series

(normalized as in (1.4.8)) simultaneously have arithmetic-geometric meaning.
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The above “geometric Siegel–Weil” formula is also needed as an ingredient in our proof of Theo-

rem A, and will be treated in Section 21.1 via uniformization (Archimedean and non-Archimedean

both work).

We highlight the simplicity of the analytic side in Theorem A(1). It is expected that arithmetic

Siegel–Weil for integral models with bad reduction should be corrected on the analytic side, e.g.

by special values of other Eisenstein series. See for example [HSY23; HLSY23] for bad reduction in

the nonsingular case detT ̸= 0 for the central derivative at s = 0 (i.e. T is n× n), or [KRY06] for

quaternionic Shimura curves. We do not know whether the analytic formulation [HSY23; HLSY23]

is expected to hold for singular T .

We argue that arithmetic Siegel–Weil formulas should be simplest to formulate on integral models

with everywhere good reduction, as in our case. We thus propose a precise formulation of the

analytic side of the central derivative arithmetic Siegel–Weil formula in our setup.

Question (Arithmetic Siegel–Weil, central point). Let T ∈ Hermn(Q) be arbitrary. For a suit-

able current gT,y, a suitable compactification of M, and a possibly modified class [Ẑ(T )] on the

compactification, do we have

hF
wF

d

ds

∣∣∣∣
s=0

E∗
T (y, s)

◦
n

?
= d̂eg([Ẑ(T )]). (1.4.9)

Our theorem verifies this proposed arithmetic Siegel–Weil formula for all singular T ∈ Hermn(Q)

of rank n − 1, in the sense of “arithmetic degrees without boundary contributions”. The formula

also holds (in the same sense) for all nonsingular T ∈ Hermn(Q). This latter case (“central deriva-

tive nonsingular arithmetic Siegel–Weil”) is possibly considered known to experts up to a volume

constant by collecting the local theorems in [Liu11; LZ22a; LL22]. This particular global statement

does not appear in the literature, though other variants are available (e.g. for unramified CM

fields F/F0 with F0 ̸= Q [LZ22a] or on integral models with bad reduction and correction terms

by special values of other Eisenstein series [HLSY23]). In one of our companion papers, we will

compute the volume constant and explain how to extract the detT ̸= 0 case of (1.4.9) from the

literature Remark 22.1.2.

A more optimistic version of (1.4.9) was given in (1.3.3) involving T ∈ Hermm(Q) for arbitrary

m, but we are less certain about the validity of that formulation in general.

In the general case of (1.4.9), we expect the current gT,y to be essentially the currents of [GS19,

Definition 4.7], though g(T,y, φf ) as defined in loc. cit. may need some modification (see above

discussion on the non-“linearly invariant” modification of their current [GS19, Definition 4.7]).

Since our main theorems take a different approach to define gT,y, we do not pursue this issue

further.

Part (2) of Theorem A is the special case of part (1) when T = diag(0, T ♭) and y = diag(1, y♭).

The geometric sides will agree essentially by definition (1.4.5). On the analytic side, the relation is

provided by the formula

E∗
T (y, s)

◦
n =

Λn(s)
◦
n

Λn−1(s+ 1/2)◦n
E∗
T ♭(y

♭, s+ 1/2)◦n −
Λn(−s)◦n

Λn−1(−s+ 1/2)◦n
E∗
T ♭(y

♭, s− 1/2)◦n (1.4.10)
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from Corollary 17.2.2, along with the functional equation E∗
T ♭(y

♭, s)◦n = E∗
T ♭(y

♭,−s)◦n. The general

case of Theorem A is proved in a similar way as the special case T = diag(0, T ♭), with an additional

“local diagonalizability argument” (proof of Theorem 22.1.1) where the identity is proved modulo∑
ℓ̸=pQ · log ℓ for any given p (and varying p removes the ambiguity).

It is also possible to formulate and prove Theorem A in terms of Faltings heights (i.e. replacing

the middle term in (1.4.5) with the degree of the metrized Hodge bundle). The formulation in

Theorem A seems more natural to us, but the version with Faltings heights is in Remark 22.1.4.

The simplest case of Theorem A is the case n = 2. When O×
F = {±1}, the Serre tensor

construction gives an open and closed embedding M0×SpecOF
Mell →M, where M0 is the moduli

stack of elliptic curves with signature (1, 0) action by OF and Mell is the moduli stack of all elliptic

curves, base-changed to OF Section 22.2. In this case, the special cycle Z(j) → M for j ∈ Z>0

pulls back to the j-th Hecke correspondence. Then the proof of Theorem A gives the following

corollary (appearing later as Corollary 22.2.2). One might think of this corollary as reformulating

a result of Nakkajima–Taguchi [NT91] (they compute Faltings heights of elliptic curves with CM

by possibly non-maximal orders) by averaging over Hecke translates and expressing the result in

terms of Eisenstein series Fourier coefficients.

Corollary 1.4.2. Assume 2 is split in OF . Fix any elliptic curve E0 over C with OF -action. For

any integer j > 0, we have∑
E

w−→E0

(hFal(E)− hFal(E0)) =
1

2

d

ds

∣∣∣∣
s=1/2

(
js+1/2σ−2s(j)

)
(1.4.11)

where the sum runs over degree j isogenies w : E0 → E of elliptic curves.

The notation hFal(E) denotes the (stable) Faltings height of the elliptic curve E after descent to

any number field, and similarly for E0. The quantity j
s+1/2σ−2s(j) is the product of the normalized

non-Archimedean local Whittaker functions in the j-th Fourier coefficient E∗
j (z, s)

◦
2 (with m = 1),

as in (1.1.7). The derivative of the Archimedean local Whittaker function W ∗
j,∞(y, s)◦2 at s = 1/2 is

also calculated explicitly and compared with its geometric counterpart (integral of Green function

wedge Chern form on upper half-plane) in Section 19.2.

Our purely Archimedean result (for arbitrary n and m♭ ≥ 1) is the following.

Theorem B (Archimedean arithmetic Siegel–Weil, nonsingular). Consider any integer m♭ with

1 ≤ m♭ ≤ n, and consider any T ♭ ∈ Hermm♭(Q) which is nonsingular and not positive definite.

(3) For any y♭ ∈ Hermm♭(R)>0, we have an equality of real numbers

d̂eg([Ẑ(T ♭)] · ĉ1(Ê∨)n−m
♭
) :=

∫
MC

gT ♭,y♭ ∧ c1(Ê
∨
C )

n−m♭
= (−1)n−m♭

C · hF
wF

d

ds

∣∣∣∣
s=s♭0

E∗
T ♭(y

♭, s)◦n

(1.4.12)

where s♭0 := (n −m♭)/2. Here C ∈ Q>0 is the volume constant from Lemma (1), for the

Hermitian space V and v0 = ∞ in the notation of loc. cit.. The constant C may depend

on n and m♭ (and F ), but does not otherwise depend on T ♭.

This appears (in stronger form) as Theorem 22.1.6. That version applies for all n (even or not)

and arbitrary level, as it is a statement about the complex Shimura variety. We gave the weaker
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version here to avoid more notation. Due to non-properness of MC → SpecC for n > 2, the

corresponding Archimedean Siegel–Weil result of [GS19] does not apply here if n > 2.

When m♭ = n, our Theorem B follows from Liu’s result [Liu11, Theorem 4.17]. We do not

have a new proof of this case. Instead, we deduce our general result from his by a certain limiting

argument. This is also our method at non-Archimedean places (replacing Liu’s Archimedean results

with the non-Archimedean results of Li–Zhang [LZ22a] and Li–Liu [LL22]). Our limiting method

will be sketched further in Section 1.7 below.

1.5. Previous work. We summarize what was previously known on arithmetic Siegel–Weil for-

mulas. These were originally formulated for GSpin Shimura varieties (as opposed to the unitary

Shimura varieties considered in Section 1.3); we call these the orthogonal and unitary cases respec-

tively. In both cases, we write n for the arithmetic dimension of the Shimura varieties (i.e. complex

dimension n− 1).

The problem was initially studied in low-dimensional situations. For quaternionic Shimura

curves, the full arithmetic Siegel–Weil formula has been proved in the influential work of Kudla–

Rapoport–Yang [KRY04; KRY06]. For modular curves, the formula has been proved in the papers

[Yan04; BF06; DY19; SSY23; Zhu23a; Zhu23b].

For Shimura varieties of complex dimension > 1, results on arithmetic Siegel–Weil formulas are

currently incomplete. Most the available results concern the case m = n and detT ̸= 0; we restrict

to this case for the moment. Then s0 = 0 is the central point and the special cycle Z(T ) → M
is empty in the generic fiber. The arithmetic cycle class [Ẑ(T )] is thus “purely vertical”, i.e.

either purely in positive characteristic (non-Archimedean), or with Z(T ) being empty with possibly

nontrivial Green current (Archimedean).

The purely Archimedean case (with detT ̸= 0 and s0 = 0) was proved by [Liu11; BY21] (unitary

and orthogonal, respectively) using different methods. Garcia–Sankaran’s Archimedean results

apply here as well if the Shimura varieties are compact (more discussion below).

For unitary groups (with detT ̸= 0 and s0 = 0), the purely non-Archimedean case for hyperspe-

cial level was first proposed and studied by Kudla–Rapoport [KR11; KR14] at an odd inert prime,

where they proved the formula when Z(T ) has dimension 0 (reducing locally to the case n = 2).

The case n = 3 at an odd inert prime was solved by Terstiege [Ter13]. The case of arbitrary n at

odd inert primes was solved in the breakthrough work of Li and Zhang [LZ22a] by an inductive

“uncertainty principle” strategy. This strategy was later adapted to solve the analogous problem at

odd ramified primes [LL22; HLSY23]. We mention that the problem formulation itself needed to be

resolved at ramified primes in the presence of bad reduction, and this was done in [HSY23] for the

Krämer model. Split primes play a relatively trivial role when detT ̸= 0 and s0 = 0. The timeline

for non-Archimedean aspects of the GSpin arithmetic Siegel–Weil formula is similar, i.e. results for

Z(T ) of dimension 0 were obtained by Kudla–Rapport and Bruinier–Yang [KR99; KR00; BY21],

the case n = 3 was resolved by Terstiege [Ter11], and the case of general n at hyperspecial level

was resolved by Li and Zhang using (a modified version of) their “uncertainty principle” strategy

[LZ22b].
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We now drop the restrictions detT ̸= 0 and s0 = 0. For the purpose of arithmetic theta lifting

(1.3.5), it is desirable to also understand the special cycle classes [Ẑ(T )] when detT = 0, to fill

out the complete arithmetic theta series. Much less is known about this case, which presents

new difficulties on both the analytic and geometric sides. It also presents new opportunities: our

arithmetic Siegel–Weil result for singular T relates Faltings heights and derivatives of Eisenstein

series. Such formulas were observed by Kudla–Rapoport–Yang on Shimura curves [KRY04]; our

result applies on unitary Shimura varieties of arbitrarily high dimension. These mixed characteristic

phenomena are not visible from arithmetic Siegel–Weil for nonsingular T at the central point s0 = 0

(which was “purely vertical”).

We mention known partial results for singular T , besides the previously mentioned work on

Shimura curves. There is concrete progress on the case T = 0, where the expected geometric side

(“arithmetic volumes”) has been computed for certain levels in the work of Hörmann and Bruinier–

Howard [Hör14; BH21], with some partial results on the comparison with Eisenstein series. In the

general case, an important advance was made by Garcia and Sankaran [GS19], who defined Green

currents via superconnections and proved a purely Archimedean version of the arithmetic Siegel–

Weil formula on compact Shimura varieties (e.g. when T is not positive semi-definite, giving an

empty special cycle with possibly nontrivial Green current) via the classical Siegel–Weil formula.

Besides the partial results for T = 0, we are not aware of any previous arithmetic Siegel–Weil

results which treat non-Archimedean (or combined Archimedean and non-Archimedean) aspects for

singular T on Shimura varieties of complex dimension > 1. This is closely related to the following

open problem: for Shimura varieties of complex dimension > 1, we are also unaware of any fully

global arithmetic Siegel–Weil results (incorporating non-Archimedean places) at a non-central point

s0 ̸= 0, besides the partial results in [BH21, Theorem C] (there for certain nonzero 1× 1 matrices

T ∈ Z). As discussed at the end of Section 1.3, our main theorems make new contributions in both

of these directions.

1.6. Non-Archimedean local main theorems. Our proof of Theorems A and B is local in

nature. In Section 1.7, we outline the key (new) strategy for proving our main local theorems via

our new limit argument. Further discussion at a finer level of detail appares in Section 1.9. In

Section 1.8, we outline some of the (new) ideas involved in decomposing our main global theorems

into our main local theorems (whose statements and proofs are both new) at every place.

Our local theorems are stated in terms of local special cycles on the Hermitian symmetric domain

in the Archimedean case (resp. Rapoport–Zink spaces in the non-Archimedean case).

To illustrate, we briefly describe the non-Archimedean case in Section 1.6. In the rest of Sec-

tion 1.6, we restrict to the case of an odd prime p inert in OF (for illustration purposes).

Fix an embedding F → Q̆p into the completion of the maximal unramified extension of Qp.

Set Fp := F ⊗Q Qp. There is a space of “local special quasi-homomorphisms” Vp, which is a

non-split Fp/Qp Hermitian space of dimension n. Given any tuple x ∈ Vm
p , there is an associated

(Kudla–Rapoport) local special cycle Z(x) ↪→ N on a Rapoport–Zink space N . These are locally

Noetherian formal schemes over Spf Z̆p, and they represent certain moduli problems for p-divisible
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groups (Section 5). They appear in Rapoport–Zink uniformization of global special cycles (Sec-

tion 11) in a manner analogous to the complex uniformization of the unitary Shimura varieties and

their special cycles. There is also an analogous tautological bundle E∨ on N .

There are associated derived local special cycle (classes) LZ(x) ∈ grmNK
′
0(Z(x))Q := grn−mK

′
0(Z(x))Q

in codimension m. If all elements of the tuple x = [x1, . . . ,xm] are nonzero, then we have

LZ(x) := OZ(x1) ⊗
L · · · ⊗L OZ(xm). (1.6.1)

For any xi = 0, is it usual to make a similar definition by replacing OZ(xi) with [ON ] − [E ]. For

any proper closed subscheme Z ⊆ N , there is a degree map degFp
: grnNK

′
0(Z)Q → Q given by the

composition

gr0K
′
0(Z)Q

∼−→ gr0K
′
0(ZFp

)Q → gr0K
′
0(SpecFp)Q = Q (1.6.2)

where the first arrow is induced by the dévissage pushforward isomorphism K ′
0(ZFp

)→ K ′
0(Z) and

the second arrow is pushforward along ZFp
→ SpecFp (e.g. induced by taking Euler characteristics

of coherent sheaves on ZFp
).

Our main “local arithmetic Siegel–Weil” result (at an odd inert prime p) is the following.

Theorem (Non-Archimedean inert local version of Theorem A). For any nonsingular T ♭ ∈ Hermn−1(Qp)

and any x♭ ∈ Vn−1
p with Gram matrix T ♭, we have

− d

ds

∣∣∣∣
s=1/2

W ∗
T ♭,p

(s)◦n =

2 degFp
(E∨ · LZ(x♭)V ) + 2

∑
Z↪→Z(x♭)H

deg(Z) · δtau(Z)

 · log p. (1.6.3)

The left-hand side is the derivative of a certain normalized (non-Archimedean) local Whittaker

function W ∗
T ♭,p

(s)◦n. On the right, the notation LZ(x♭)V ∈ grn−1
N K ′

0(Z(x♭)Fp
)Q denotes a “derived

vertical local special cycle class” and Z(x♭)H denotes the flat part of Z(x♭); the former is finite flat

over Spf Z̆p. The sum runs over all irreducible components Z of (the scheme associated to) Z(x♭)H .

The quantity δtau(Z) ∈ Q is a certain “local change of tautological height” which arises from the

reduction process from (global) mixed characteristic heights to local quantities.11 The definition of

δtau(Z) is somewhat involved, but some additional discussion may be found in Section 1.8.

For a more concrete simple case, see Example 1.7.1 in the next section. For the full precise

formulation of our non-Archimedean local main theorems, we refer to Section 18 in the body of

this paper (there stated in terms of local densities) where the inert/split/ramified cases are treated

in parallel.

1.7. Strategy: overview. We now describe our key local strategy: “take a limit” (Figure 1).

In Figure 1 below, for a given place v of Q, we consider T ♭ ∈ Hermn−1(Qv) with detT ♭ ̸= 0, and

T = diag(t, T ♭) for suitable nonzero t ∈ Qv. On the left, the limit refers to t → 0 in the v-adic

topology (meaning the real topology if v =∞). The upper horizontal arrow should be understood

as a local version of Theorem A(2), and the lower horizontal arrow should be understood as the

(known) local version of (1.4.9) when detT ̸= 0.

11Each Z is associated with a quasi-canonical lifting of some level s ∈ Z≥0 in the sense of Gross [Gro86]; see

Section 7.3. Our notation δtau(Z) here is the δtau(s) in (7.2.7).
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Normalized local Whit-

taker functions W ∗
T ♭,v

(s)◦n
for U(n − 1, n − 1) at

s = 1/2 (near-center)

Local 1-cycles, “heights”

Local 0-cycles, degrees

Normalized local Whittaker

functions W ∗
T,v(s)

◦
n for

U(n, n) at s = 0 (center)

Our main

local theorems

li
m
it

Known local theorems

[Liu11; LZ22a; LL22]

li
m
it

Figure 1. A local limiting method

This limiting method is the main conceptual novelty in our work, and is the the key idea driving

our main results. In Figure 1, the left vertical arrow and upper horizontal arrow are new in this

work. In the right vertical arrow, the relation between limits and Faltings heights is also new in

this work.

It is striking that the limiting method plays a similar role at all places, Archimedean and non-

Archimedean. In the purely Archimedean case, i.e. when v = ∞ with T ♭ nonsingular and not

positive definite, we are able to run our limiting argument for special cycles (currents) in arbi-

trary dimension. This is why our purely Archimedean result (Theorem B) applies in arbitrary

codimension.

For non-Archimedean places, it is interesting to ask whether the limiting method in Figure 1 can

be adapted to the case of higher dimensional special cycles (corresponding to T ♭ of smaller rank).

Some key difficulties are mentioned in Remark 1.8.1.

We also mention a slight difference if v = p is a prime split in OF . The known local theorems

[Liu11; LZ22a; LL22] apply in the Archimedean, inert, and ramified cases respectively. In the split

case, the lower left corner of Figure 1 will involve the special value W ∗
T,v(0)

◦
n (while the derivative

at s = 0 appears in the Archimedean, inert, and ramified cases). In the split case, the “known

local theorem” in Figure 1 refers to a certain vanishing statement for a certain contribution to

W ∗
T,v(0)

◦
n (“vertical part” via an analogue of Cho–Yamauchi’s formula; the vanishing is proved in

Lemma 18.5.1) and emptiness of local 0-cycles.

In the next example, we sketch the strategy from Figure 1 in a simple non-Archimedean case.

The reader seeking a more detailed sketch of a more general setup (along with a comparison between

the Archimedean and non-Archimedean strategies) may refer to Section 1.9.

Example 1.7.1. Suppose p is a prime which is inert in OF . Take T ♭ and T as in Figure 1, and

assume t is such that T defines a non-split Hermitian space. We prove a limiting formula (inert

case)

d

ds

∣∣∣∣
s=−1/2

W ∗
T ♭,p

(s)◦n = lim
t→0

(
d

ds

∣∣∣∣
s=0

W ∗
T,p(s)

◦
n + (log |t|p − log p)W ∗

T ♭,p
(−1/2)◦n

)
, (1.7.1)
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which appears in the text as Proposition 18.5.2 (there stated via local densities). This is the left

vertical arrow in Figure 1. Here | − |p is the usual p-adic norm.

The right vertical arrow in Figure 1 asserts that the analytic limit formula in (1.7.1) has a

geometric interpretation in terms of the local special cycles Z(x).
To illustrate a relatively simple case, consider the case n = 2 (and p ̸= 2). We then have

N ∼= Spf Z̆p[[u]] (non-canonically). Consider

T ♭ =
(
p
)

T = diag(t, T ♭) t = pe (1.7.2)

for even integers e ∈ Z≥0, where T
♭ is a 1× 1 matrix. We have

W ∗
T ♭,p

(s)◦2 = ps+1/2 + p−s+1/2 W ∗
T,p(s)

◦
2 = p(e+1)s − p−(e+1)s + (1− p)p(e+1)s

e∑
i=1

(−q−2s)i.

Set OFp
:= OF ⊗Z Zp. With notation as sketched in Section 1.6, let x = [x,x♭] ∈ Vn

p be any

tuple with Gram matrix (x,x) = T . Then Z(x♭) ∼= Spf OĔ for a certain degree p + 1 extension

Ĕ/Q̆p. Over Z(x♭), the universal p-divisible group from N pulls back to X1 ⊗Zp OFp (Serre tensor

construction) where X1 → Spf OĔ is a quasi-canonical lifting of level 1 in the sense of Gross [Gro86].

If X0 denotes the canonical lifting, there is an isogeny ψ1 : X0 → X1 of minimal degree (unique up

to O×
Fp
), with degψ1 = p. We have

δ̆Fal(ψ1) :=
1

2
log(degψ1)−

1

[Ĕ : Q̆p]
lengthOĔ

(e∗Ω1
kerψ1/OĔ

) log p (1.7.3)

=

(
1

2
− 1

p+ 1

)
log p (1.7.4)

where the second equality follows from a computation of Nakkajima–Taguchi [NT91] (with e∗

denoting pullback along the identity section). We call the left-hand side a “local change of Faltings

height”; its relation with (global) Faltings height is sketched in Section 1.8.

In this case, our geometric analogue of (1.7.1) is the limit formula

−δ̆Fal(ψ1) · degZ(x♭) = lim
x→0

(
(degFp

(OZ(x) ⊗L OZ(x♭))) · log p−
1

2
(log |t|p − log p) · degZ(x♭)

)
(1.7.5)

where the limit t→ 0 is p-adic. We have

1

2

d

ds

∣∣∣∣
s=0

W ∗
T,p(s)

◦
2
[LZ22a]
= (degFp

LZ(x)) · log p W ∗
T ♭,p

(−1/2)◦2
[LZ22a]
= degZ(x♭). (1.7.6)

These may be thought of as (nonsingular, central point) “local arithmetic Siegel–Weil” and (non-

singular, near-central) “local geometric Siegel–Weil” formulas, respectively.

Applying our limiting formulas in (1.7.1) and (1.7.5) (along with the local functional equation

W ∗
T ♭,p

(s)◦2 =W ∗
T ♭,p

(−s)◦2) produces the formula

d

ds

∣∣∣∣
s=1/2

W ∗
T ♭,p

(s)◦2 = 2δ̆Fal(ψ1) · degZ(x♭). (1.7.7)

This is one form of our main local theorem in this simple special case (compare the global version,

Theorem A(2), and the more general local formulation in Section 1.6).
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In extremely impressionistic terms, the formula in (1.7.5) states that the “limit” of the special

divisor limx→0Z(x) “converges” to some “local part” of a tautological bundle (essentially the

Hodge bundle) when intersecting against Z(x♭), after regularizing. We remark that the analogous

“numerical limit” statement (without regularizing) is literally true if Z(x♭) is replaced by any

(proper) curve in the special fiber over N . That case has a conceptual explanation: Grothendieck–

Messing deformation theory. This discussion is continued in (1.9.13) and the text below in loc.

cit..

1.8. Local-to-global. For the global-to-local reduction process, we use complex uniformization

(Archimedean place) and Rapoport–Zink uniformization (non-Archimedean places). Unlike the

previously known case detT ̸= 0 for T ∈ Hermn(Q) (giving a purely vertical arithmetic special

cycle class), we have a new mixed characteristic “horizontal” contribution in the Faltings height.

While the Faltings height decomposes locally after picking a section of the metrized Hodge bundle,

it does not admit an obvious canonical local decomposition. Such a canonical decomposition seems

necessary for the comparison with local Whittaker functions (as appearing in Eisenstein series

Fourier coefficients), which presumably does not retain information on which section was picked.

Instead, we do have a decomposition for the difference between (stable) Faltings heights of any

two abelian varieties A1, A2 (over a number field E) in a fixed isogeny class. We may assume A1 and

A2 have everywhere semi-abelian reduction after extending E. The difference of Faltings heights is

then

hFal(A2)− hFal(A1) =
∑
p|deg ϕ

ap log p =
1

[E : Q]

∑
p

∑
w̆|p

[Ĕw̆ : Q̆p]δ̆Fal(ϕw̆) (1.8.1)

δ̆Fal(ϕw̆) :=
1

2
log(deg ϕw̆)−

1

[Ĕw̆ : Q̆p]
lengthOĔw̆

(e∗Ω1
kerϕ/OĔw̆

) log p (1.8.2)

for some ap ∈ Q and any choice of isogeny ϕ : A1 → A2 (extend ϕ over OE). Here, the symbol

e means the identity section, the inner sum in (1.8.1) runs over all prime ideals w̆ of E ⊗Q Q̆p

(with associated residue field Ĕw̆), and ϕw̆ means the associated isogeny of p-divisible groups

A1[p
∞]→ A2[p

∞] base-changed to Spf OĔw̆
.

The coefficients ap do not depend on the choice of ϕ, by linear independence of log p for different

p. This is also the reason why a difference of Faltings heights appears in Corollary 1.4.2. We then

argue that these numbers ap ∈ Q (averaged over the special cycle) can be calculated in a purely local

way, in terms of local special cycles on Rapoport–Zink spaces. The argument we give is somewhat

delicate, as we wish to avoid writing down explicit (global) isogenies ϕ : A1 → A2, so that we obtain

a more local formulation. The quantities δFal(ϕw̆) are amenable to (local) calculation on Rapoport–

Zink spaces, but may depend on the chosen isogeny of p-divisible groups ϕw̆. We show that certain

“minimal degree” isogenies ϕw̆ lift to global isogenies of p-divisible groups (Section 10.2) and can

be used to calculate local contributions to (differences of) Faltings height.

The global-to-local reduction process from hFal(−) (Faltings heights) to δFal(ϕw̆) (local quanti-

ties calculate-able on Rapoport–Zink spaces) for “minimal degree” ϕw̆ is the content of Sections 9

and 10. The relation with global special cycles via uniformization is explained in Part 4. There is

also the issue that the tautological bundle Ê∨ is not the same as the metrized Hodge bundle (but is
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known to behave similarly, as first observed by Gross [Gro78] and studied further in [BHKRY20II]),

so the (more natural) version with “tautological height” needs additional argument. The “tauto-

logical height” and Faltings height are treated in parallel in Sections 9 and 10.

While previous work for special points on Shimura curves [KRY04] also studied the change

in Faltings heights along isogenies, our insistence on a purely local formulation is an important

difference for our method. We only observe the limiting phenomena in Figure 1 (below) on a local

level; this is what allows us to prove a theorem on Shimura varieties of arbitrarily large dimension.

Remark 1.8.1. After our work, the arithmetic Siegel–Weil formula in (1.4.9) remains open only

for T with rank(T ) ≤ n− 2 (corresponding to special cycles Z(T ) of dimension ≥ 1 in the generic

fiber, if nonempty). We mention some of the difficulties for these higher dimensional special cycles,

from our perspective.

Our strategy in Figure 1 strongly emphasizes local limits on both the analytic and geometric

sides. On the geometric side at non-Archimedean places, this is possible in the rank ≥ n− 1 case

because e.g. the special cycles are contained inside supersingular loci at all nonsplit primes. This

allows us to describe global special cycles in terms of local special cycles on a single Rapoport–Zink

space (at each prime).

Higher dimensional special cycles may pass through several strata, so a single Rapoport–Zink

space should not be enough to capture all information. We are not sure whether it is sensible to

“piece together” the intersection-theoretic information coming from several Rapoport–Zink spaces.

Moreover, the corresponding local special cycles on Rapoport–Zink spaces may be non-proper (so

it is unclear how to extract local intersection numbers in the more general situation).

For our method, it is also important to locally decompose Faltings heights in a canonical way. In

the rank n− 1 case, this was accomplished using the “change of Faltings height along an isogeny”

formula. To generalize our limiting strategy to higher dimensional cycles, we may need a similar

canonical local decomposition involving heights of higher dimensional cycles on the Shimura variety.

1.9. Strategy: local limit. For illustration purposes, we sketch the local limiting strategy de-

scribed in Section 1.7 (particularly Figure 1) at a finer level of detail. In Section 1.9, we let F/Q
be an imaginary quadratic field, and allow n to be even or odd. We sketch the case where v =∞
(Archimedean) and where v = p is an odd prime inert in OF . In the main text, the inert/ram-

ified/split cases are treated in parallel (Section 18). We hope that the similarities between the

Archimedean and non-Archimedean cases are visible from the sketches below.

Case v = ∞. For purposes of exposition, we consider T ♭ ∈ Hermn(R) and t ∈ R<0. Set

T := diag(t, T ♭). Let V be any signature (n − 1, 1) non-degenerate F/Q Hermitian space with

pairing denoted (−,−) (for any n ≥ 1).

We prove the limiting identity (left vertical arrow in Figure 1)

d

ds

∣∣∣∣
s=−1/2

W ∗
T ♭,∞(s)◦n = lim

t→0−

(
d

ds

∣∣∣∣
s=0

W ∗
T,∞(s)◦n + (log |t|∞ + log(4πeγ))W ∗

T ♭,∞(−1/2)◦n
)

(1.9.1)

where γ is the Euler–Mascheroni constant, and | − |∞ denotes the usual real norm. This formula

appears below (more generally) as Proposition 19.1.2. The proof of this limiting formula is the
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bulk of the work at the Archimedean place. Note the similarity with the non-Archimedean version

(1.9.8) (see also Section 15.6 for more comparisons).

On the geometric side of Figure 1, the local 0-cycles (resp. 1-cycles) should be interpreted as

Green currents of top degree (n−1, n−1) (resp. degree (n−2, n−2)) on the associated Hermitian

symmetric domain D parameterizing maximal negative definite C-linear subspaces of VR. Consider
the signature (n − 1, 1) complex Hermitian space VR, with Hermitian pairing (−,−). Any tuple

x ∈ VR with nonsingular Gram matrix has an associated Kudla Green current [ξ(x)], studied by Liu

[Liu11] in the unitary case. There is a certain local special cycle D(x) ⊆ D (complex submanifold

which is the locus of C-lines z ∈ D which are perpendicular to all elements of the tuple x), arising

in the complex uniformization of global special cycles.

Let x♭ = [x♭1, . . . , x
♭
n−1] ∈ V

n−1
R be a tuple with Gram matrix T ♭ and consider nonzero x ∈ VR ∈

spanC(x
♭)⊥ in the orthogonal complement. Set

x = [x, x♭1, . . . , x
♭
n−1] t := (x, x) T := diag(t, T ♭). (1.9.2)

Liu’s Archimedean local theorem [Liu11, Theorem 4.1.7] implies∫
D
[ξ(x)] =

d

ds

∣∣∣∣
s=0

W ∗
T,∞(s)◦n. (1.9.3)

We are using the star product construction of [ξ(x)], which unfolds as

[ξ(x)] = [ξ(x)] ∗ [ξ(x♭)] = ω(x) ∧ [ξ(x♭)] + [ξ(x)] ∧ δD(x♭) (1.9.4)

where ω(x) is a (1, 1)-form associated with x (Kudla–Millson form up to a normalization), δD(x♭) is

a Dirac delta current, and ξ(x) is a certain function on D with logarithmic singularity along D(x).
The function ξ(x) is expressed in terms of the exponential integral Ei. We have

∫
D[ξ(x)]∧ δD(x♭) =

−Ei(4πt) and the limit formulas

lim
x→0

ω(x) = c1(Ê∨) lim
u→0−

(Ei(u)− log |u|) = γ (1.9.5)

where c1(Ê∨) denotes the Chern form of dual tautological bundle on D (as in Section 8). Under the

assumption that T ♭ is positive definite, we have W ∗
T ♭,∞(−1/2)◦n = degD(x♭) = 1 (“local geometric

Siegel–Weil”, i.e. D(x♭) is a single point). We thus have∫
D
c1(Ê∨) ∧ [ξ(x♭)] = lim

x→0

((∫
D
[ξ(x)]

)
+ log |t|+ log(4πeγ)

)
. (1.9.6)

Using the functional equation W ∗
T ♭,∞(s)◦n = W ∗

T ♭,∞(−s)◦n, the limit formula in (1.9.1) now implies

the following theorem.

Theorem (Archimedean local version of Theorem A). We have

− d

ds

∣∣∣∣
s=1/2

W ∗
T ♭,∞(s)◦n =

∫
D
c1(Ê∨) ∧ [ξ(x♭)]. (1.9.7)

This is our main local Archimedean theorem for positive definite T ♭ (i.e. the dotted arrow in

Figure 1). This appears below as Theorem 19.1.1, which also includes a version for non-positive

definite T ♭. Limiting on the geometric side of Figure 1 was provided by a limiting property of

the (normalized) Kudla–Millson form, i.e. ω(x) → c1(Ê∨) as x → 0. To compare with the limit
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of Whittaker function derivatives, we used the special value formula W ∗
T ♭,∞(−1/2)◦n = 1 (“local

geometric Siegel–Weil”) and the asymptotics of Ei.

Case v = p is an odd prime inert in OF . For our non-Archimedean main local theorems, we run

an argument similar (in spirit) to the Archimedean case where the star product of Green currents

is replaced by a derived tensor product of complexes of coherent sheaves on Rapoport–Zink spaces.

Suppose T ♭ ∈ Hermn−1(Qp) with detT ♭ ̸= 0, and consider t ∈ Qp such that T := diag(t, T ♭)

has ε(T ) = −1 (defines a nonsplit Hermitian space). For the normalized local Whittaker functions

defined in Section 15 below, we will prove the limit formula

d

ds

∣∣∣∣
s=−1/2

W ∗
T ♭,p

(s)◦n = lim
t→0

(
d

ds

∣∣∣∣
s=0

W ∗
T,p(s)

◦
n + (log |t|p − log p)W ∗

T ♭,p
(−1/2)◦n

)
. (1.9.8)

This appears as Proposition 18.5.2 below. Note the similarity with the Archimedean version (1.9.1)

(see also Section 15.6 for comparisons with the ramified and split versions).

We set N := N (n−1, 1) for the Rapoport–Zink space N (n−1, 1) from Section 5. We also use the

notation on special cycles from loc. cit., e.g. V is the space of local special quasi-homomorphisms.

(These notations were briefly sketched in Section 1.6.)

If x is a basis for V, then Z(x) is a scheme with structure morphism Z(x) → Spf Z̆p which is

adic and proper [LZ22a, Lemma 2.10.1]. In this case, Z(x) is thus a finite order thickening of its

special fiber Z(x)Fp
, and there is a degree map degFp

: gr0K
′
0(Z(x))Q → Q given by the composite

gr0K
′
0(Z(x))Q

∼−→ gr0K
′
0(Z(x)Fp

)Q → gr0K
′
0(SpecFp)Q = Q (1.9.9)

where the first arrow is induced by the dévissage pushforward isomorphismK ′
0(Z(x)Fp

)→ K ′
0(Z(x))

and the second arrow is pushforward along Z(x)Fp
→ SpecFp (e.g. induced by taking Euler char-

acteristics of coherent sheaves on Z(x)Fp
).

Let x♭ = [x♭1, . . . ,x
♭
n−1] ∈ Vn−1 be a tuple with Gram matrix T ♭ and consider nonzero x ∈ V ∈

spanFp
(x♭)⊥ in the orthogonal complement. Set

x = [x,x♭1, . . . ,x
♭
n−1] t := (x,x) T := diag(t, T ♭). (1.9.10)

Li–Zhang’s inert Kudla–Rapoport theorem [LZ22a, Theorem 1.2.1] implies

(degFp

LZ(x)) · log p = 1

2

d

ds

∣∣∣∣
s=0

W ∗
T,p(s)

◦
n. (1.9.11)

As an element of grnNK
′
0(Z(x))Q, the derived tensor product unfolds as

LZ(x) = [LZ(x)⊗L
ON

LZ(x♭)] = [LZ(x)⊗L
ON

LZ(x♭)V ] + [LZ(x)⊗L
ON

LZ(x♭)H ]. (1.9.12)

Here LZ(x♭)H = [OZ(x♭)H
] ∈ grn−1

N K ′
0(Z(x♭)H )Q is the “horizontal part” of LZ(x♭), with Z(x♭)H ⊆

Z(x♭) denoting the flat part, and LZ(x♭)V ∈ grn−1
N K ′

0(Z(x♭)Fp
)Q is the “vertical part” of LZ(x♭)

(see [LZ22a, §5.2]; we are using the dévissage pushforward isomorphismK ′
0(Z(x♭)Fp

)→ K ′
0(Z(x♭)V )

where Z(x♭)V is the vertical part from loc. cit.).
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We show the limit formulas

lim
x→0

(degFp
[LZ(x)⊗L

ON
LZ(x♭)V ]) = degFp

(E∨ · LZ(x♭)V ) (1.9.13)

lim
x→0

(
(degFp

[LZ(x)⊗L
ON

LZ(x♭)H ]) · log p− 1

2
(log |t|p − log p) · deg(Z(x♭)H )

)
(1.9.14)

=
∑

Z↪→Z(x♭)H

deg(Z) · δtau(Z) · log p.

Here E∨ is the certain dual tautological bundle on N , the sum runs over components Z of (the

finite scheme associated to) Z(x♭)H , the notation deg(Z(x♭)H ) means the degree of the adic finite

flat morphism Z(x♭)H → Spf Z̆p (and similarly for deg(Z)), and δtau(Z) ∈ Q is the appropriate

“local change of tautological height”. As in Section 7.3, each Z is associated with a quasi-canonical

lifting of some level s, and our notation δtau(Z) here is the δtau(s) in (7.2.7).

The quantity δtau(Z) (and the closely related “local change of Faltings height” δFal) arise from

our reduction process from mixed characteristic heights to local quantities. This local-to-global

reduction is begun in Part 3 and completed in Part 4.

The “vertical” limit formula in (1.9.13) follows from a Grothendieck–Messing theory argument

(such vertical limiting behavior was observed in the inert case by [LZ22a] via computation, and

later in the ramified case by [LL22] via a linear-invariance argument), see Lemma 18.5.4. We prove

the “horizontal” limit formula in (1.9.14) componentwise, i.e. we prove a refined limiting formula

for each component Z ↪→ Z(x♭)H (Remark 18.5.5). Each Z embeds into a smaller Rapoport–Zink

space of dimension 2, where we make a computation in terms of quasi-canonical liftings.

We have the formula W ∗
T ♭,p

(−1/2)◦n = deg(Z(x♭)H → Spf Z̆p) (“local geometric Siegel–Weil”;

right-hand side denotes degree of the indicated adic finite flat morphism), see Lemma 18.1.3 (ob-

served in the inert case by Li–Zhang [LZ22a, Corollary 4.6.1]). Using the functional equation

W ∗
T ♭,p

(s)◦n =W ∗
T ♭,p

(−s)◦n, the limit formula in (1.7.1) now implies

− d

ds

∣∣∣∣
s=1/2

W ∗
T ♭,p

(s)◦n =

2 degFp
(E∨ · LZ(x♭)V ) + 2

∑
Z↪→Z(x♭)H

deg(Z) · δtau(Z)

 · log p.. (1.9.15)

This is our main non-Archimedean local theorem for odd inert p (i.e. the dotted arrow in Figure

1), and appeared previously in Section 1.10. The analogous statement treating inert/split/ramified

simultaneously is Theorem 18.1.2 in this paper (there stated in terms of local densities). Limiting

on the geometric side of Figure 1 was provided by the formulas in (1.9.13) and (1.9.14).

1.10. Outline. We briefly summarize the remaining contents of the paper. Further explanations

may be found at the beginning of some parts and sections.

This work is divided into Parts 1 through 7 and appendices. We hope that each part may be

read mostly independently for the reader willing to assume a few results from other parts.

In Part 1, Section 3, we set up the global moduli stacks (RSZ) and special cycles (KR) appearing

in our main global theorems. In Section 4, we define the associated arithmetic special cycle classes

and discuss arithmetic degrees.
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In Part 2, we set up the analogous local special cycles on Rapoport–Zink spaces (inert/rami-

fied/split) and Hermitian symmetric domains. The case of split primes is less well-studied in the

literature than the inert/ramified cases (we need uniformization in a non supersingular situation

at split primes). Section 6 contains some new results on decomposing local special cycles into

quasi-canonical lifting cycles at split primes, which we need later. These are analogous to known

results at inert and ramified primes (Section 7.3), though our method of proof is different.

In Part 3, we begin the reduction process from global heights in mixed characteristic to quantities

computable in terms of local special cycles. We study “local change of heights” along isogenies, in

a way suitable for formulation of our main local theorems.

In Part 4, we discuss complex and Rapoport–Zink uniformization of special cycles in our setup,

and finish the reduction process from global heights/intersections to local quantities. Strictly

speaking, the Rapoport–Zink uniformization we need at split places does not seem covered by the

literature (not supersingular locus). We treat inert/ramified/split in parallel. Most of the time, we

disallow p = 2 only in the ramified case. We explain a modified Green current for singular T (of

rank n− 1 and size n× n) in Section 12.4.

Part 5 discusses U(m,m) Siegel–Weil Eisenstein series. To formulate and prove our main results,

it is extremely important that we normalize the Eisenstein series and local Whittaker functions (e.g.

by certain L-factors). We pin down explicit precise normalizations, guided by special value formulas

and symmetric functional equations. We also study (normalized) Fourier coefficients for singular T

(focusing on rank m− 1 and size m×m), and give formulas needed for our main results. Section

15.6 collects several limiting formulas for local Whittaker functions (the left vertical arrow in Figure

1), whose proofs appear later.

Part 6 contains the heart of this work. Here, we prove our main local identities at inert/rami-

fied/split and Archimedean places via the local limiting method sketched in Sections 1.7 and 1.9.

In Part 7, we first give some special value formulas (local and geometric Siegel–Weil, Sections

20 and 21) which are needed to prove our arithmetic Siegel–Weil theorems. The finale occurs in

Section 22.1, where we collect our local main theorems to prove our (global) arithmetic Siegel–Weil

theorems. This proof relies on results from almost all preceding sections. Section 22.2 contains a

reformulation of our arithmetic Siegel–Weil results in the special case n = 2, via an exceptional

comparison with Hecke translates of CM elliptic curves.

The appendices may be technically useful. Appendix A explains the setup we use forK0 groups of

Deligne–Mumford stacks. Appendix B concerns p-divisible groups, where we fix some notation and

record some (presumably standard) facts. Appendix C contains some notation on abelian schemes,

and records a proof for quasi-compactness of special cycles (which does not seem explicitly available

in the literature).

Our algebro-geometric conventions follow the Stacks project [SProject] unless stated otherwise.
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2. Conventions on Hermitian spaces and lattices

2.1. Hermitian, alternating, symmetric. Consider a Dedekind domain OF0 with fraction field

F0. Let F be a finite étale F0-algebra of degree 2, i.e. F is either a degree 2 separable field extension

of F0, or F = F0 × F0. Let OF ⊆ F be the integral closure of OF0 in F . Write a 7→ aσ for the

nontrivial involution of F over F0, and tr : F → F0 for the trace map a 7→ a+ aσ.

Assume that the different ideal d of OF over OF0 is principal, and choose a generator u ∈ d

satisfying uσ = −u. This is always possible if OF is a free OF0-module.

Let L be a finite locally free OF -module of constant rank. If F0 has characteristic ̸= 2, the

following data are equivalent.

(1) A Hermitian pairing on L, i.e. a OF0-bilinear map (−,−) : L× L→ F satisfying

(x, ay) = a(x, y) (y, x) = (x, y)σ (2.1.1)

for all a ∈ OF and x, y ∈ L.
(2) An OF -compatible alternating pairing on L, i.e. a OF0-bilinear map ⟨−,−⟩ : L × L → F0

satisfying

⟨ax, y⟩ = ⟨x, aσy⟩ ⟨y, x⟩ = −⟨x, y⟩ (2.1.2)

for all a ∈ OF and x, y ∈ L.
(3) An OF -compatible symmetric pairing on L, i.e. a OF0-bilinear map

❲
−,−

❳
: L × L → F0

satisfying
❲
ax, y

❳
=

❲
x, aσy

❳ ❲
y, x

❳
=

❲
x, y

❳
(2.1.3)

for all a ∈ OF and x, y ∈ L.
If L is equipped with any of the equivalent data above, we say that L is a Hermitian OF -lattice (or

Hermitian OF -module). Note that our Hermitian pairings (−,−) are conjugate linear in the first

argument. We pass between these pairings using the formulas (depending on the choice of u)

2(x, y) =
❲
x, y

❳
− u−1❲ux, y

❳
⟨x, y⟩ =

❲
u−1x, y

❳ ❲
x, y

❳
= tr((x, y))

2(x, y) = ⟨ux, y⟩ − u⟨x, y⟩ ⟨x, y⟩ = − tr((x, y)u−1)
❲
x, y

❳
= ⟨ux, y⟩

and this will be freely used in the paper. The choice of u plays a limited role for us, so we generally

suppress it.
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We say that
❲
−,−

❳
is the associated trace pairing, and otherwise avoid the notation

❲
−,−

❳
outside

of Section 2.1.

Given any tuple x = [x1, . . . , xm] ∈ Lm, its Gram matrix is the matrix (x, x) = T with i, j-

th entry Ti,j = (xi, xj). We write LF := L ⊗OF
F and say that a Hermitian OF -module L is

non-degenerate if the Gram matrix for any F -basis of LF has nonzero determinant. Given non-

degenerate Hermitian F -modules V and V ′ with Hermitian pairings (−,−) and (−,−)′, there is a

canonical σ-linear involution of F -modules

HomF (V, V
′) HomF (V

′, V )
f 7→f† such that (fx, y′)′ = (x, f †y′)

for all x ∈ V and y′ ∈ V ′.
(2.1.4)

The notation HomF (V, V
′) and HomF (V

′, V ) does not include any requirement on preserving Her-

mitian pairings.

Given a non-degenerate Hermitian OF -lattice L, we always form its dual lattice L∗ with respect

to the trace pairing
❲
−,−

❳
, i.e.

L∗ := {x ∈ LF : tr(x, y) ∈ OF0 for all y ∈ L}. (2.1.5)

The dual lattice L∨ with respect to (−,−) is the same as the dual lattice for ⟨−,−⟩. We have

L∨ = uL∗ (as sublattices of LF ). If the dual L∨ with respect to (−,−) or ⟨−,−⟩ is intended, we

will state this explicitly. We say that L is self-dual if L = L∗.

As a typical example of passing between (−,−) and ⟨−,−⟩, suppose OF0 = Z and suppose OF is

the ring of integers in an imaginary quadratic field F/Q. Let (A, ι, λ) be a Hermitian abelian variety

(Definition 3.1.1) over an algebraically closed field k of characteristic ̸= p, i.e. A is an abelian variety

over k with an action ι : OF → End(A), and λ is an OF -compatible quasi-polarization on A. After

picking a trivialization Zp(1) ∼= Zp of p-th power roots of unity over k, the polarization λ induces

an (OF ⊗ZZp)-compatible alternating pairing on the Tate module Tp(A), so we automatically view

Tp(A) as a Hermitian (OF ⊗Z Zp)-lattice without further mention. If (A′, ι′, λ′) is another such

Hermitian p-divisible group, note that the induced Hermitian pairing on Hom(Tp(A), Tp(A
′)) does

not depend on the choice of trivialization Zp(1) ∼= Zp or the choice of u.

The notation Hermn(OF0) means the set of n×n Hermitian matrices with coefficients in OF (i.e.

T ∈ Mn,n(OF ) satisfying T = tT where tT means conjugate transpose). Here we are considering

the subfunctor Hermn ⊆ ResOF /OF0
Mn,n of the Weil restriction (of n × n matrices Mn,n). We

adhere strictly to this notation (when OF is understood), e.g. Hermn(R) will typically mean n×n
complex Hermitian matrices when OF /OF0 = C/R is understood.

2.2. Lattices for local fields. Continuing in the setup of Section 2.1, suppose F0 is a local field.

Let η : F×
0 → {±1} be the character associated to F/F0 by local class field theory. Given a non-

degenerate Hermitian F -module V of rank n, define its local invariant

ε(V ) := η((−1)n(n−1)/2 detT ) ∈ {±1} (2.2.1)

where T is the Gram matrix of any basis for V . This is normalized so that ε(V ) = 1 for the

the Hermitian F -module V given by the antidiagonal unit Gram matrix. Rank n non-degenerate

Hermitian F -modules V and V ′ are isomorphic if and only if ε(V ) = ε(V ′). If T ∈ Hermn(F0) is a

Hermitian matrix (with entries in F ) satisfying detT ̸= 0, we set ε(T ) := η((−1)n(n−1)/2 detT ).
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Next, assume F0 is non-Archimedean and that OF0 ⊆ F0 is its ring of integers. Write q for the

residue cardinality of OF0 . If q is even, we require F/F0 to be unramified. Let ϖ0 ∈ OF0 and

ϖ ∈ OF be uniformizers (meaning ϖ ∈ ϖ0O×
F in the unramified cases) satisfying ϖσ = −ϖ. If a

non-degenerate Hermitian F -module V contains a full rank self-dual OF -lattice, then ε(V ) = 1.

The “norm” ∥−∥ on a Hermitian F -module V with pairing (−,−) is given by

∥x∥ := q−vϖ0 ((x,x))/2 (2.2.2)

where vϖ0 is the ϖ0-adic valuation, normalized so that vϖ0(ϖ0) = 1.

Given a non-degenerate Hermitian OF -lattice L of rank n, we set ε(L) := ε(LF ). By a lattice

or sublattice L′ ⊆ L, we mean any OF -submodule which is finite free of constant rank (similarly

for lattices or sublattices in LF ). If L′ has rank n, we say that L′ is full rank in LF . A sublattice

L′ ⊆ L is saturated if ax ∈ L′ with a ∈ F× and x ∈ L implies x ∈ L′ (equivalently, L′ is a direct

summand of L).

We say that L is integral if L ⊆ L∗. If F/F0 is nonsplit, we say that L is almost self-dual if

L ⊆ L∗ and lengthOF
(L∗/L) = 1. We say that a non-degenerate integral lattice L is maximal

integral if any integral lattice L′ ⊆ LF with L ⊆ L′ satisfies L = L′.

If L is a non-degenerate Hermitian OF -lattice, we define the valuation val(L) ∈ 1
2Z such that

q−val(L) = vol(L) (2.2.3)

where vol(L) is the volume of L for the self-dual Haar measure on LF with respect to the pairing

x, y 7→ ψ(tr(x, y)) for any unramified (unitary) additive character ψ : F0 → C×. If L is integral,

we have q2val(L) = |L∗/L|. If F/F0 is unramified, we have val(L) ∈ Z. Given x ∈ L, we write

⟨x⟩ ⊆ L for the rank one OF -submodule generated by x. If (x, x) ̸= 0, we set val(x) := val(⟨x⟩)
(and otherwise set val(x) =∞).

Continuing to assume L is non-degenerate and integral, we define its sequence of fundamental

invariants to be the unique sequence of integers (a1, . . . , an) with 0 ≤ a1 ≤ · · · ≤ an such that

L∗/L ∼= ⊕ni=1OF /ϖai (where n is the rank of L). Two non-degenerate integral Hermitian OF -
lattices of the same rank are isomorphic if and only if they have the same sequence of fundamental

invariants (in the unramified case, this follows from diagonalizability of Hermitian lattices; in the

ramified case, this follows from [Jac62, Proposition 4.3, Proposition 8.1] (see also [LL22, Lemma

2.12])). We set

t(L) := |{ai ∈ {a1, . . . , an} : ai ̸= 0}| ∈ Z amax(L) := an (2.2.4)

and refer to t(L) as the type of L. If F/F0 is ramified, recall that t(L), 2val(L), and n all have the

same parity (follows from [Jac62, Proposition 4.3, Proposition 8.1]).

Given a finite length OF -module M , we define ℓ(M) ∈ Z such that

qℓ(M) = |M |. (2.2.5)

where |M | denotes the cardinality of M .

The above terminology is adapted from e.g. [LZ22a] (inert), [FYZ21] (inert and split), [LL22]

(ramified). We made slight modifications to give a uniform description (e.g. our val(L) is half of

the val(L) appearing in [LL22], and our ℓ(M) differs by a factor of 2 from some of the references).
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Part 1. Global special cycles

3. Moduli stacks of abelian varieties

We discuss Kudla–Rapoport (KR) global special cycles on Rapoport–Smithling–Zhang (RSZ)

smooth integral models of unitary Shimura varieties (which may be stacks). Fix an imaginary

quadratic field extension F/Q with ring of integers OF and write a 7→ aσ for the nontrivial auto-

morphism σ of F . We write ∆ ∈ Z<0 and
√
∆ ∈ OF (pick a square root) for (generators of the)

discriminant and different, respectively.

3.1. Integral models.

Definition 3.1.1. Let S be a scheme over SpecOF . By a Hermitian abelian scheme over S, we

mean a tuple (A, ι, λ) where

A is an abelian scheme over S of constant relative dimension n

ι : OF → End(A) is a ring homomorphism

λ : A→ A∨ is a quasi-polarization satisfying:

(Action compatibility) The Rosati involution † on End0(A) satisfies

ι(a)† = ι(aσ) for all a ∈ OF .

An isomorphism of Hermitian abelian schemes is an isomorphism of abelian schemes which

respects the OF -actions and polarizations (exactly). For fixed n ≥ 1, the moduli stack of Hermitian

abelian schemes M is the stack12 in groupoids over SpecOF with

M (S) := {groupoid of relative n-dimensional Hermitian abelian schemes over S} (3.1.1)

for OF -schemes S.

For an integer r with 0 ≤ r ≤ n, we next consider

(Kottwitz (n − r, r) signature condition) For all a ∈ OF , the characteristic polynomial of

ι(a) acting on LieA is (x− a)n−r(x− aσ)r ∈ OS [x]
for pairs (A, ι), where A → S is a relative n-dimensional abelian scheme with OF -action ι, and S
is an OF -scheme. Here we view OS as an OF -algebra via the structure map S → SpecOF . This

defines a substack13

M (n− r, r) ⊆M (3.1.2)

consisting of Hermitian abelian schemes of signature (n − r, r). The inclusion M (n − r, r) → M

is representable by schemes (in the sense of [SProject, Section 04ST]) and is a closed immersion.

There is an isomorphism14 M (n− r, r)→M (r, n− r) given by (A, ι, λ) 7→ (A, ι ◦ σ, λ).
For any integer d ≥ 1, there is a substack M (d) ⊆ M consisting of Hermitian abelian schemes

(A, ι, λ) where λ is polarization of constant degree deg λ := deg kerλ = d. If An,d (over SpecOF )

12By a stack in groupoids over some base scheme S, we always mean a (not necessarily algebraic) stack in groupoids

as in [SProject, Definition 02ZI] over the fppf site (Sch/S)fppf .
13A substack will always mean a strictly full substack.
14As in the Stacks project (e.g. [SProject, Section 04XA]), we often abuse terminology and say “isomorphism” of

stacks instead of “equivalence”.
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denotes the moduli stack of (relative) n-dimensional abelian schemes equipped with a polarization

of degree d, the forgetful map M (d) → An,d is representable by schemes, finite, and unramified (e.g.

via Lemma C.2.3). Hence M (d) is a Noetherian Deligne–Mumford stack which is separated and

finite type over SpecOF (because this is true of An,d as proved with level structure in the classical

[MFK94, §7.2 Theorem 7.9]; one can deduce the stacky version upon inverting primes dividing the

level, taking stack quotients, and patching over SpecOF ).
We set

M (n− r, r)(d) := M (n− r, r) ∩M (d) (3.1.3)

where the right-hand side is an intersection of substacks of M . There is an open and closed disjoint

union decomposition15

M (d)[1/∆] =
∐

(n−r,r)

M (n− r, r)(d)[1/∆] (3.1.4)

over SpecOF [1/∆], where the disjoint union runs over all possible signatures (n− r, r).
The structure morphism M (n−r, r)(d)[1/(d∆)]→ SpecOF [1/∆] is smooth of relative dimension

(n− r)r (e.g. by Remark 3.5.6 below; recall that being smooth of some relative dimension may be

checked fppf locally on the target for morphisms of algebraic stacks). We set M0 := M (1, 0)(1).

The structure morphism M0 → SpecOF is proper, quasi-finite,16 and étale by [How12, Proposition

3.1.2] or [How15, Proposition 2.1.2].

Given any non-degenerate Hermitian OF -lattice L of rank n and signature (n− r, r), we define

an associated substack

M⊆M0 ×SpecOF
M (n− r, r) (3.1.5)

as follows (cf. [KR14, Proposition 2.12], there in a principally polarized situation). Write (−,−)
for the pairing on L. Let bL be the smallest positive integer such that bL · (−,−) is OF -valued. Let
L′ be the Hermitian OF lattice which is the OF -module L but with Hermitian pairing bL · (−,−).
Form the dual lattice L′∨ of L′ with respect to the Hermitian pairing, and set d′L := |L′∨/L′|.

If L is self-dual of signature (n−1, 1) and 2 ∤ ∆, we set dL := 1 (the exotic smooth setup for even

n, see Section 3.2). Otherwise, let dL ∈ Z>0 be the product of ramified primes and the primes p

for which L⊗Z Zp is not self-dual.

Definition 3.1.2. LetM⊆M0 ×SpecOF
M (n− r, r)[1/(dL∆)] be the substack

M(S) :=

(A0, ι0, λ0, A, ι, λ) :

HomOF⊗Ẑp(T
p(A0,s), T

p(As)) ∼= L⊗Z Ẑp

for every geometric point s of S, with p = char(s),

and bL · λ is a polarization of degree d′L

 (3.1.6)

for schemes S over SpecOF [1/(dL∆)], where

(A0, ι0, λ0) ∈M0(S) (A, ι, λ) ∈M (n− r, r)(S). (3.1.7)

15Here, the notation M (d)[1/∆] means M (d) ×SpecOF SpecOF [1/∆]. We often use such shorthand, along with

subscripts for base change, e.g. M (d)
S := M (d) ×SpecOF S over an understood base.

16Following the Stacks project [SProject, Definition 0CHU], we require that finite morphisms of algebraic stacks

are by definition (relatively) representable by schemes. The morphism M0 → SpecOF is not finite in this sense,

because M0 is not a scheme. Nevertheless, we continue to use terminology like “representable by schemes and finite”

for morphisms of stacks which are not necessarily algebraic.
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Warning 3.1.3. Whenever L satisfies the even rank exotic smooth setup (Section 3.2), we will

extendM to a smooth Deligne–Mumford stack which surjects onto SpecOF (see loc. cit.). In that

case, we will override the notation here: after Section 3.2, the notationM will always denote the

exotic smooth moduli stack for such L. The restriction of the exotic smooth moduli stack over

SpecOF [1/∆] will recover the stack in Definition 3.1.2.

In the definition ofM, the notation HomOF⊗Ẑp(T
p(A0,s), T

p(As)) ∼= L⊗ZẐp asserts the existence
of isomorphisms of Hermitian lattices, and the elements of HomOF⊗Ẑp(T

p(A0,s), T
p(As)) are not

required to respect Hermitian pairings. As usual, T p(−) is the away-from-p adèlic Tate module (if

p = 0, this is over the full finite adèles) and Ẑp =
∏
ℓ̸=p Zℓ. Note that M depends only on the

adèlic isomorphism class17 of L. The stack M (also the extension in Section 3.2) and its special

cycles will be the global moduli stacks of main interest in this work. We generally suppress L from

notation, but sometimes writeML instead ofM to emphasize L dependence.

We claim that M is a Noetherian Deligne–Mumford stack which is separated and smooth of

relative dimension (n − r)r over SpecOF [1/(dL∆)]. Indeed, there is an open and closed disjoint

union decomposition

M0 ×SpecOF
M (n− r, r)(d)[1/(d∆)] =

∐
L′′

ML′′
(3.1.8)

running over representatives L′′, one for each adèlic isomorphism class of non-degenerate Hermitian

OF -lattices of signature (n − r, r) satisfying L′′ ⊆ L′′∨ and |L′′∨/L′′| = d. We have used flatness

of M (n − r, r)(d)[1/(d∆)] → SpecOF [1/(d∆)] in the open and closed decomposition (to lift to

characteristic 0; cf. [KR14, Proposition 2.12] [RSZ18, Remark 4.2]). With notation as above, the

map

ML ML′

(A0, ι0, λ0, A, ι, λ) (A0, ι0, λ0, A, ι, bLλ)

(3.1.9)

is an isomorphism for any L, after restricting to SpecOF [1/(dL∆)].

Remark 3.1.4. If L has rank n = 1, we can construct M without discarding any primes. Then

M→ SpecOF is smooth, by smoothness of M (1, 0)(d) → SpecOF for any d ∈ Z>0.

In the next lemma, Aσ0 is the abelian scheme A0 but with OF -action ι0 ◦ σ.

Lemma 3.1.5. Let L be any non-degenerate Hermitian OF -lattice of rank n and signature (n−r, r),
with associated moduli stackM. There exists a finite degree field extension E/F and (A0, ι0, λ0, A, ι, λ) ∈
M(OE [1/(dL∆)]) such that A is OF -linearly isogenous to An−r0 × (Aσ0 )

r. In particular, M is

nonempty.

Proof. First consider κ = C (equipped with a morphism OF → C). Fix the trivializations of roots

of unity Z/dZ ∼−→ µµµd(C) sending 1 7→ e−2πi/d.

Choose
√
∆ to be the square-root whose image under F → C has positive imaginary part. We

pass between Hermitian and alternating forms using the generator
√
∆ of the different ideal (Section

17We say that non-degenerate Hermitian OF lattices L and L′ are adèlically isomorphic (or are in the same adèlic

isomorphism class) if there exist isomorphisms of OF ⊗Z Zp-Hermitian lattices L ⊗Z Zp
∼= L′ ⊗Z Zp for every prime

p, as well as isomorphisms of OF ⊗Z R-Hermitian spaces L⊗Z R ∼= L′ ⊗Z R (classical terminology: genus).
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2.1). Express L as a triple (L, ι, λ) where ι : OF → EndZ(L) is an action and λ is a OF -compatible

alternating pairing on L.

Take (A0, ι0, λ0) to be the complex elliptic curve C/OF . If L0 := OF is the rank one Hermitian

OF -lattice with Hermitian pairing (x, y) = xσy, we have H1(A0,Z) ∼= L0 as Hermitian lattices.

Take any orthogonal decomposition LF = W ⊕W⊥ where W is positive definite of rank n − r
and W⊥ is negative definite of rank r. Define the C = OF ⊗ZR-action on L⊗ZR to agree with ι on

W ⊗F C and to agree with ι ◦σ on W⊥⊗F C. This complex structure gives a tuple (A, ι, λ), where

A := (L ⊗Z R)/L is an abelian variety with OF -action ι and action compatible quasi-polarization

λ. We have H1(A,Z) ∼= L as Hermitian lattices. By the usual comparison of H1(−,Z) with p-adic
Tate modules [Mum85, §24 Theorem 1], we conclude (A0, ι0, λ0, A, ι, λ) ∈M(C).

We claim that A is OF -linearly isogenous to An−r0 × (Aσ0 )
r. Indeed, any OF -linear inclusion

On−rF ↪→ L ∩ W and any σ-linear inclusion OrF ↪→ L ∩ W⊥ will define an OF -linear isogeny

An−r0 × (Aσ0 )
r → A.

Since A0 is defined over some number field Q, it follows that A and any isogeny An−r0 ×(Aσ0 )r → A

may also be defined over Q (here using characteristic zero, so the kernel of the isogeny is étale).

Descend these objects to some number field E.

Over a number field, it is a classical fact that any elliptic curve withOF -action has everywhere po-

tentially good reduction [Deu41]. After extending E if necessary, we thus obtain (A0, ι0, λ0, A, ι, λ) ∈
M(OE [1/(dL∆)]) (the OF -actions extend by the Néron mapping property, and the polarizations

extend to polarizations as in the proof of [FC90, Theorem 1.9]). The Néron mapping property

extends the isogeny An−r0 × (Aσ0 )
r → A over SpecOE [1/(dL∆)]. □

The preceding lemma will provide a base point for non-Archimedean uniformization (Section

11.3). For arbitrary L and specializing to any geometric point of characteristic p > 0, the abelian

variety A of Lemma 3.1.5 is supersingular (resp. ordinary) if p is nonsplit (resp. split) by classical

results of Deuring [Deu41] on endomorphism rings of elliptic curves.

Notation 3.1.6. Given a commutative ring R with an automorphism σ : R → R (e.g. R = OF ),
given a presheaf of modules F on a scheme S over SpecR, and given an action ι : R→ End(F) (with
F viewed as a presheaf of abelian groups), we say the R action via ι is R-linear (resp. σ-linear)

if ι(a) = a (resp. ι(a) = aσ) for all a ∈ R. Here we view OS as an R-algebra via the structure

morphism S → SpecR.

Given any (A, ι, λ) ∈ M (n − r, r)[1/∆] for a base scheme S, there is a canonical eigenspace

decomposition

LieA = (LieA)+ ⊕ (LieA)− (3.1.10)

characterized by (LieA)+ (resp. (LieA)−) being rank n− r (resp. rank r) and the OF action via

ι on (LieA)+ (resp. (LieA)−) being OF -linear (resp. σ-linear).

Definition 3.1.7. By the tautological bundle on M (n − r, r)[1/∆], we mean the rank r locally

free sheaf E (for the fppf topology) whose dual is given by the assignment E ∨ := (LieA)− for

(A, ι, λ) ∈M (n− r, r)[1/∆](S) for OF -schemes S.
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3.2. Exotic smoothness. Our main results at ramified primes eventually restrict to even n and

residue characteristic ̸= 2. For this reason, we require n even and 2 ∤ ∆ in Section 3.2.

Notation 3.2.1 (Exotic smooth setup, even rank). A non-degenerate Hermitian OF -lattice L of

even rank n satisfies the even rank exotic smooth setup if 2 ∤ ∆, the signature of L is (n − 1, 1),

and L is self-dual (for the trace pairing).

In the exotic smooth setup, we recall howM can be extended to a certain smooth integral model

over SpecOF . We consider arbitrary signature (n− r, r). For Hermitian abelian schemes (A, ι, λ),

we consider

(Polarization condition ◦) The quasi-polarization |∆| · λ is a polarization and we have

ker(|∆| · λ) = A[
√
∆].

We write M (n− r, r)Kot,◦ for the substack of M (n− r, r) consisting of Hermitian abelian schemes

(A, ι, λ) where λ satisfies polarization condition ◦ from above. Here “Kot” indicates that we have

“only” imposed the Kottwitz signature condition. For d = |∆|n, the map

M (n− r, r)Kot,◦ M (n− r, r)(d)

(A, ι, λ) (A, ι, |∆| · λ)
(3.2.1)

is representable by closed immersions of schemes. In particular, M (n−r, r)Kot,◦ is also a separated

Deligne–Mumford stack which is finite type over SpecOF . The restriction M (n−r, r)Kot,◦[1/∆]→
M (n−r, r)(d)[1/∆] is an open immersion. If κ is any algebraically closed field of characteristic 0, an

object (A, ι, λ) ∈M (n− r, r) lies in M (n− r, r)Kot,◦ if and only if the Hermitian OF ⊗Z Zp-lattice
Tp(A) is self-dual (for the trace pairing) for all p. In particular, we have

M0 ×SpecOF
M (n− r, r)Kot,◦[1/∆] =ML (3.2.2)

where L is a representative for the unique adèlic isomorphism class of self-dual signature (n− r, r)
non-degenerate Hermitian OF -lattices (if it exists) . Such L exists if and only if n ≡ 2r (mod 4)

due to the global product formula for local invariants of Hermitian spaces.

Now we restrict to signature (n− 1, 1) and n ≥ 2. Let M (n− 1, 1)◦ be the flat part of M (n−
1, 1)Kot,◦, i.e. the scheme-theoretic image of the generic fiber. Equivalently, this is the largest closed

substack which is flat over SpecOF .

Example 3.2.2. Suppose O×
F = {±1} (i.e. further exclude F = Q[

√
−3]). If Mell → SpecOF

denotes the moduli stack of elliptic curves base-changed to SpecOF , the Serre tensor construction

E 7→ E⊗ZOF defines an open and closed immersion iSerre : Mell →M (1, 1)◦ (22.2.2). If we replace

OF by (representatives of) fractional ideal classes forOF , we obtain an isomorphism
∐

Cl(OF ) Mell →
M (1, 1)◦, where Cl(OF ) is the class group. This is [KR14, Proposition 14.4]. The local analogue

(e.g. Lemma 5.6.2) will play an important role in this work. In Section 22.2, we revisit this

description of M (1, 1)◦ to restate our main theorem in the simplest case.
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Rapoport–Smithling–Zhang have given a moduli description [RSZ21, §6] for M (n− 1, 1)◦. They

define18 a closed substack M (n − 1, 1)RSZ ⊆ M (n − 1, 1)Kot,◦ with the same generic fiber, with

M (n − 1, 1)RSZ → SpecOF smooth of relative dimension n − 1. This moduli description is as

follows: given any scheme S over SpecOF , the groupoid M (n− 1, 1)RSZ(S) ⊆M (n− 1, 1)Kot,◦(S)

is the full subcategory consisting of tuples (A, ι, λ) such that the action ι : OF → End(A) satisfies:

(1) (Pappas wedge condition) For all a ∈ OF , the action of ι(a) on LieA satisfies

2∧
(ι(a)− a) = 0 and

n∧
(ι(a)− aσ) = 0.

(2) (PRRSZ spin condition) For every geometric point s of S, the action of (ι(a)−a) on LieAs

is nonzero for some a ∈ OF .

The signature condition implies that the equation involving
∧n in the wedge condition is automatic,

and that the wedge condition is empty if n = 2. The wedge and spin conditions are automatic (given

the signature condition) over SpecOF [1/∆], i.e. M (n − 1, 1)Kot,◦[1/∆] = M (n − 1, 1)RSZ[1/∆].

For closedness of the spin condition, we refer to the closedness assertion in [RSZ21, Theorem 5.4].

The acronym PRRSZ stands for Pappas, Rapoport, Richarz, Smithling, and Zhang. We have

M (n− 1, 1)◦ = M (n− 1, 1)RSZ by agreement in the generic fiber, flatness, and closedness.

We define the exotic smooth moduli stack

M◦ := M0 ×SpecOF
M (n− 1, 1)◦ (3.2.3)

associated to any self-dual lattice L of signature (n−1, 1). The structure morphismM◦ → SpecOF
is smooth, by the discussion above.

Notation 3.2.3. From here on, we always write M instead of M◦ if L satisfies the even rank

exotic smooth setup (we are overriding previous notation, see Warning 3.1.3; i.e. M[1/∆] recovers

the moduli stack in Definition 3.1.2). Recall that we have set dL := 1 for L satisfying the even rank

exotic smooth setup.

Remark 3.2.4. Suppose L satisfies the even rank exotic smooth setup, and form the associated

moduli stackM→ SpecOF . Then Lemma 3.1.5 holds for every geometric point Specκ→ SpecOF
by the same proof verbatim (replacing dL∆ in loc. cit. with the number 1).

We have the following analogue of (3.1.10): set

(LieA)+ :=
⋂
a∈OF

ker(ι(a)− a)|LieA (3.2.4)

for objects (A, ι, λ) ∈M (n− 1, 1)◦(S) over OF -schemes S.

Lemma 3.2.5. For objects (A, ι, λ) ∈M (n−1, 1)◦(S) over OF -schemes S, the subsheaf (LieA)+ ⊆
LieA is a local direct summand of rank n−1 whose formation commutes with arbitrary base change.

18Strictly speaking, Rapoport–Smithling–Zhang normalize their polarization differently (i.e. our λ is their |∆|−1λ).

Their convention is more common elsewhere in the literature, and is of course equivalent to our formulation. We

prefer our normalization, which seems more natural for our main results on the comparison with Eisenstein series

Fourier coefficients. A related remark is [LL22, Footnote 9].
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The OF action via ι on (LieA)+ (resp. the line bundle (LieA)/(LieA)+) is OF -linear (resp. σ-

linear).

Proof. This lemma (and its proof) is a global analogue of [LL22, Lemma 2.36] (the latter is an

analogous statement on a Rapoport–Zink space).

Fix a ∈ OF such that {1, a} forms a Z-basis of OF . We have exact sequences

0 (LieA)+ LieA im(ι(a)− a) 0

0 im(ι(a)− a) LieA coker(ι(a)− a) 0

ι(a)−a

(3.2.5)

of quasi-coherent sheaves on S. The wedge and spin conditions imply that (LieA)+ has rank n− 1

if S = Spec k for a field k. If S is an arbitrary reduced scheme, the rank constancy of coker(ι(a)−a)
on geometric points implies that coker(ι(a)−a) is finite locally free of rank n−1 (e.g. by [SProject,

Lemma 0FWG]). Hence, when S is reduced, every sheaf appearing in (3.2.5) is finite locally free,

with (LieA)+, im(ι(a) − a), and coker(ι(a) − a) having ranks n − 1, 1, and n − 1 respectively.

Thus the exact sequences of (3.2.5) remain exact after pullback along any morphism of schemes

S′ → S (where S is reduced but S′ is not necessarily reduced). For arbitrary S (not necessarily

reduced), the morphism S → M (n − 1, 1)◦ corresponding to (A, ι, λ) factors through a regular

(hence reduced) locally Noetherian scheme fppf locally on S (since the moduli stack M (n−1, 1)◦ is

smooth over SpecOF ). These considerations show that (LieA)+ ⊆ LieA is a local direct summand

of rank n− 1 whose formation commutes with arbitrary base change.

It is clear that the OF action via ι on (LieA)+ is OF -linear. To show that the action on

(LieA)/(LieA)+ is σ-linear, it is enough to check the case where S is an integral scheme (argue

fppf locally as above). When S is integral, the σ-linearity follows from the (n − 1, 1) signature

condition on LieA. □

Definition 3.2.6. By the tautological bundle on M (n − 1, 1)◦, we mean the rank one locally free

sheaf E whose dual is E ∨ := (LieA)/(LieA)+ for (A, ι, λ) ∈M (n− 1, 1)◦(S) for OF -schemes S.

The restriction of E to M (n−1, 1)◦[1/∆] coincides with the restriction of the tautological bundle

defined in Definition 3.1.7.

Remark 3.2.7. We mention how M (n− 1, 1)RSZ relates to other moduli stacks. We caution that

the terms “Pappas model” and “Krämer model” in the literature may refer to variants, e.g. using

principal polarizations.

Let M (n− 1, 1)Pap ⊆M (n− 1, 1)Kot,◦ be the closed substack (“Pappas model”, named for the

work [Pap00]) where we impose the wedge condition (for both n even and odd) but not the spin

condition.

Let M (n − 1, 1)Krä be the stack in groupoids over SpecOF (“Krämer model”, named for the

work [Krä03]) consisting of tuples (A, ι, λ,F) for (A, ι, λ) ∈ M (n − 1, 1)Kot,◦(S) and F ⊆ LieA a

ι-stable local direct summand of rank n− 1, such that the OF action via ι on F (resp. (LieA)/F)
is OF -linear (resp. σ-linear).
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We have a diagram

M (n− 1, 1)RSZ ×M (n−1,1)Kot,◦ M (n− 1, 1)Krä M (n− 1, 1)Krä

M (n− 1, 1)RSZ M (n− 1, 1)Pap M (n− 1, 1)Kot,◦

⌟

(3.2.6)

where the horizontal arrows are closed immersions, the vertical arrows are forgetful, and the outer

square is 2-Cartesian. The left vertical arrow is an isomorphism (by Lemma 3.2.5, i.e. F = (LieA)+)

and the inclusion M (n − 1, 1)RSZ ↪→ M (n − 1, 1)Pap is also an open immersion. All arrows are

isomorphisms after base-change to SpecOF [1/∆].

3.3. Special cycles. Fix a non-degenerate Hermitian OF -lattice L of rank n, with associated

moduli stack M. The following definition of special cycles is due to Kudla–Rapoport [KR14,

Definition 2.8] (there in a principally polarized situation). The notation (x, x) was explained in

Section C.1.

Definition 3.3.1 (Kudla–Rapoport special cycles). Given an integer m ≥ 0, let T ∈ Hermm(Q)

be a m × m Hermitian matrix (with coefficients in F ). The Kudla–Rapoport (KR) special cycle

Z(T ) is the stack in groupoids over SpecOF defined as follows: for schemes S over SpecOF , we
take Z(T )(S) to be the groupoid

Z(T )(S) :=

(A0, ι0, λ0, A, ι, λ, x) :

(A0, ι0, λ0, A, ι, λ) ∈M(S)

x = [x1, . . . , xm] ∈ HomOF
(A0, A)

m

(x, x) = T

 . (3.3.1)

We sometimes refer to elements x ∈ HomOF
(A0, A) as special homomorphisms.

Example 3.3.2. Suppose 2 ∤ ∆, and consider L which is self-dual of signature (1, 1). Let j ∈ Z>0

be any positive integer. If O×
F = {±1}, consider the inclusion

M0 ×SpecOF
Mell

1×iSerre−−−−−→M0 ×SpecOF
M (1, 1)◦ =M (3.3.2)

with iSerre as in Example 3.2.2. Then Z(j)→M pulls back to the j-th Hecke correspondence over

the left-hand side, parameterizing triples (E0, E, w) where E0 and E are elliptic curves, E0 has OF
action of signature (1, 0), and w : E → E0 is an isogeny of degree j. This is [KR14, Proposition

14.5]. We revisit this example in Section 22.2, where we restate our main theorem in the simplest

case via this description.

In the situation of Definition 3.3.1, recall EndOF
(A0) = OF (if the right-hand side is abuse of

notation for global sections of the constant sheaf OF on S). If the Hermitian pairing on L is OF -
valued, we thus have Z(T ) = ∅ unless T has coefficients in OF . If L is self-dual and 2 ∤ ∆, we have

Z(T ) = ∅ unless
√
∆ ·T has coefficients in OF . Positivity of the Rosati involution also implies that

the special cycle Z(T ) is empty unless T is positive semi-definite of rank ≤ n.
By Lemma C.2.3, the forgetful map Z(T ) → M is representable by schemes, finite, and un-

ramified (and of finite presentation). Hence Z(T ) is a separated Deligne–Mumford stack of finite
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type over SpecOF . We will soon verify that Z(T ) is smooth (after base change) over an explicit

nonempty open subscheme of SpecOF (Lemma 3.5.5).

We refer to Z(T ) →M as being a cycle overM, although it is not literally a cycle (where the

precise version of cycle means a formal linear combination of integral closed substacks). We also

do not wish to take pushforward, which may lose information. However, since Z(T )→M is finite

and unramified, this morphism is étale locally on the target a disjoint union of closed immersions

[SProject, Lemma 04HJ]. For a more explicit version with level structure, see Lemma 3.4.5 below.

We record a few miscellaneous facts which will be used later. If Ti ∈ Hermmi(Q) for i = 1, . . . , j

with m := m1 + · · ·+mj and all mi > 0, then there is an identification

Z(T1)×M · · · ×M Z(Tj) ∼=
∐

T∈Hermm(Q)
satisfying (3.3.4)

Z(T ) (3.3.3)

where the disjoint union runs over T of the form

T =


T1 ∗

. . .

∗ Tj

 (3.3.4)

(i.e. whose block diagonal entries are given by the Ti).

We write Z(T )H ⊆ Z(T ) for the largest closed substack flat over SpecOF , and call Z(T )H a

horizontal special cycle or the flat part. There is a decomposition of Z(T ) as a scheme-theoretic

union of closed substacks19

Z(T ) = Z(T )H ∪
⋃
p

Z(T )V ,p (3.3.5)

where Z(T )V ,p := Z(T ) ×SpecZ SpecZ/pepZ for a choice of ep ≫ 0 (notation ep is temporary).

This follows from quasi-compactness of Z(T ) (which also ensures that we may take ep = 0 for all

but finitely many p). We think of (3.3.5) as decomposition into a “horizontal part” and “vertical

parts”. A similar horizontal/vertical decomposition for local special cycles on Rapoport–Zink spaces

is [LZ22a, §2.9] (inert case).
While the horizontal part Z(T )H is defined canonically, the vertical parts Z(T )V ,p depend on

ep as above. We will mostly work with the “derived vertical special cycle classes” from Section 4.6,

which do not depend on such a choice of ep.

Given any T ∈ Hermm(Q) and γ ∈Mn,n(OF ), there is a commutative diagram

(A0, ι0, λ0, A, ι, λ, x) (A0, ι0, λ0, A, ι, λ, x · γ)

Z(T ) Z(tγTγ)

M

(3.3.6)

induced by γ. Below, we set OF,(p) := OF ⊗Z Z(p).

19By the scheme-theoretic union of finitely many closed substacks Zi of a Deligne–Mumford stack Z, we mean

the closed substack whose ideal sheaf is given by intersecting the ideal sheaves of Zi on the small étale site of Z.
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Lemma 3.3.3. Fix any T ∈ Hermm(Q) and γ ∈Mn,n(OF ). Consider the induced map

Z(T )→ Z(tγTγ). (3.3.7)

(1) This map is a finite morphism of algebraic stacks. If moreover γ ∈ GLm(F ) (resp. γ ∈
GLm(OF )) then the map is a closed immersion (resp. isomorphism).

(2) Assume γ ∈ GLm(F ), and let N ∈ Z be the product of primes p such that γ ̸∈ GLm(OF,(p)).
Then the restriction Z(T )[1/N ]→ Z(tγTγ)[1/N ] is an open immersion.

Proof. (1) The map Z(T )→ Z(T )(tγTγ) is finite because the projections toM are finite (finiteness

for morphisms of algebraic stacks may be checked fppf locally on the target, so we reduce to the

case of schemes). If γ ∈ GLm(F ), then Z(T )→ Z(T )(tγTγ) is a monomorphism of algebraic stacks

(check via the moduli description), and any proper monomorphism of algebraic stacks is a closed

immersion. If γ ∈ GLm(OF ), there is an inverse Z(tγTγ)→ Z(T ) sending x 7→ x · γ−1.

(2) Consider the substack Z ⊆ Z(tγTγ) consisting of tuples (A0, ι0, λ0, A, ι, λ, w) such that

w · γ−1 ∈ HomOF
(A0, A)

m (i.e. that the tuple of quasi-homomorphisms w · γ−1 is a tuple of

homomorphisms). The closed immersion Z(T )→ Z(tγTγ) maps isomorphically onto Z.
A quasi-homomorphism f : B → B′ of abelian schemes (over any base scheme S) is a homomor-

phism if and only the induced quasi-homomorphisms of p-divisible groups f [p∞] : B[p∞]→ B′[p∞]

are homomorphisms for all primes p. This is a closed condition on S for each prime p (e.g. the

quasi-homomorphism version of [RZ96, Proposition 2.9]). This is also an open condition for any

prime p which is invertible on S (by étaleness of the p-divisible groups). If p is a prime such that

γ ∈ GLm(OF,(p)), then the tuple w · γ−1 induces a tuple of quasi-homomorphisms A0[p
∞]→ A[p∞]

consisting of homomorphisms. □

3.4. Level structure. Let L be any non-degenerate Hermitian OF -lattice of rank n, and form the

associated moduli stackM. We discuss level structure forM.

Set V = L⊗OF
F , and form the unitary group U(V ) (over SpecQ). Let L0 = OF any self-dual

Hermitian OF -lattice of rank 1. We set

KL0,p := StabU(V0)(Qp)(L0 ⊗ Zp) KL,p := StabU(V )(Qp)(L⊗ Zp)

KL0,f =
∏
p

KL0,p KL,f =
∏
p

KL,p

for all p, where StabU(V )(Qp)(L ⊗ Zp) denotes the stabilizer of L ⊗ Zp in U(V )(Qp), etc.. We say

that KL,f ⊆ U(V )(Af ) is the adèlic stabilizer of L. Set K ′
L,f = KL0,f ×KL,f . Note that there is

no dependence (up to functorial isomorphism) on the choice of L0, or the choice of L within its

adèlic isomorphism class. We use the usual notation where Kp
L,f means to omit the p-th factor in

the product, etc..

For integers N ≥ 1, we define the “principal congruence subgroups”

Kp(N) := ker(KL,p → GL(L⊗ Zp/NZp)) Kf (N) =
∏
p

KL,p(N)

(suppressing L dependence from notation) and similarly define K0,p(N0) and Kf (N0) for N0 ≥ 1.

Given a pair N ′ = (N0, N) of integers N0, N ≥ 1, we set K ′
f (N

′) := K0,f (N0) × Kf (N) and
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K ′
p(N

′) := K0,p(N0)×Kp(N), etc.. Given N ′ = (N0, N), we sometimes abuse notation, e.g. N ′ ≥ a
means N0, N ≥ a, and the notation X [1/N ′] for an algebraic stack X will mean inverting all primes

dividing N ′. If N0 = N , we write K ′
f (N) := K ′

f (N
′).

Let K ′
f = K0,f ×Kf ⊆ K ′

L,f be any open compact subgroup which admits product factorizations

K0,f =
∏
pK0,p and Kf =

∏
pKp. We set K ′

p := K0,p×Kp, etc.. Let NK′
f
be the product of primes

p for which K0,p ̸= KL0,p or Kp ̸= KL,p. We say that K ′
f is standard at p if p ∤ NK′

f
.

Notation 3.4.1. For K ′
f ⊆ K ′

L,f as above, we reserve the term small or small level to mean that

K ′
f ⊆ K ′

f (N
′) for some N ′ ≥ 3.

Consider α = (A0, ι0, λ0, A, ι, λ) ∈ M(S) for some scheme S. Suppose p is a prime which is

invertible on S. For any integer e ≥ 0, we consider the fppf sheaf

Level(pe) ⊆ Isom(A0[p
e], L0 ⊗Z Z/peZ)× Isom(A[pe], (L0 ⊗OF

L)⊗Z Z/peZ) (3.4.1)

on S, where Level(pe) is the open and closed subfunctor corresponding to isomorphisms A0[p
e]→

L0/p
eL0 and A[pe]→ L/peL which lift to OF -linear isomorphisms

Tp(A0,s)
∼−→ L0 unitary up to scalar

HomOF
(Tp(A0,s), Tp(As))

∼−→ L unitary

over every geometric point s of S. Since L0 is rank one, the “unitary up to scalar” condition is

automatic.

Consider any open compact subgroupK ′
p ⊆ K ′

L,p. For each e ≥ 0, we writeK ′
p mod pe (temporary

notation) for the image of K ′
p in GL1(L0⊗ZZ/peZ)×GLn(L⊗ZZ/peZ). There is a canonical action

of K ′
p mod pe on Level(pe).

Definition 3.4.2 (Level structure). Let K ′
f ⊆ K ′

L,p be any factorizable open compact subgroup, as

above. Consider an object α = (A0, ι0, λ0, A, ι, λ) ∈M(S) for some scheme S → SpecOF [1/NK′
f
].

If p is prime which is invertible on S, the sheaf of level K ′
p structures for α is the quotient

(coequalizer)20

LevelK′
p
:= (K ′

p mod pe)e≥0\(Level(pe))e≥0 (3.4.2)

in the category of pro-objects for the category of fppf sheaves on S. If p is not invertible on S, we

let LevelK′
p
be the constant sheaf valued in a singleton set.

The sheaf of level K ′
f structures for α is the product

LevelK′
f
:=
∏
p

LevelK′
p
. (3.4.3)

over all primes p. This is an fppf sheaf on S, and is locally constant in the étale topology.

A K ′
p level structure (rep. K ′

f level structure) for α is a global section of LevelK′
p
(resp. LevelK′

f
).

Remark 3.4.3. Let K ′
f , α, and S be as in Definition 3.4.2. Fix a geometric point s of S, with

char(s) = p ≥ 0. Assume moreover that S is connected. In this case, giving a K ′
f -level structure for

20Note that this quotient LevelK′
p
is (isomorphic to) a sheaf (not just a pro-sheaf), so it is sensible to refer to

LevelK′
p
an fppf sheaf on S (rather than a pro-object).
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α is (canonically) same as giving a pair (η̃0, η̃) where η̃0 (resp. η̃) is a π1,ét(S, s)-stable K
p
0,f -orbit

(resp. Kp
f -orbit) of isomorphisms

η0 : T
p(A0,s)

∼−→ L0 ⊗Z Ẑp unitary up to scalar

η : HomOF⊗ZẐp
(T p(A0,s, As)

∼−→ L⊗Z Ẑp unitary.

In the notation of Definition 3.4.2, note that K ′
p = K ′

p(p
e) implies LevelK′

p
= Level(pe). In

Remark 3.4.3, note that the “unitary up to scalar” condition is automatic because L0 has rank 1.

Even when S is not connected, we abuse notation and write (η̃0, η̃) for level K ′
f structure in the

sense of Section 3.4

Given an open compact K ′
f as in Definition 3.4.2, we now define a stack in groupoidsMK′

f
over

SpecOF [1/(dLNK′
f
)] with

MK′
f
(S) := {(α, η̃0, η̃) : α ∈M(s) and (η̃0, η̃) a level K ′

f structure for α} (3.4.4)

for schemes S over SpecOF [1/(dLNK′
f
)]. Given T ∈ Hermm(Q), we write Z(T )K′

f
:= Z(T )×MMK′

f

(“level K ′
f special cycle”).

Write An,d,N for the moduli stack over SpecOF [1/N ] of (relative) n-dimensional abelian schemes

A with degree d polarization and a chosen isomorphism A[N ]→ L⊗ Z/NZ of group schemes (not

necessarily compatible with symplectic pairings). We similarly form A1,1,N0 using the lattice L0

(and pick a basis of L0 for convenience). Recall that An,d,N is representable by a separated Deligne–

Mumford stack of finite type over SpecOF [1/N ], and that An,d,N is a scheme quasi-projective over

SpecOF [1/N ] if N ≥ 3 (see [MFK94, §7.2 Theorem 7.9]).

Let bL, dL ∈ Z>0 be associated to L, as discussed before Definition 3.1.2. If K ′
f (N

′) is the

principal congruence subgroup of some level N ′ = (N0, N), consider the forgetful morphism

MK′
f (N

′) A1,1,N0 ×An,dL,N (3.4.5)

which forgets the OF -actions and sends λ 7→ bLλ. For level structure, see the description in (3.4.1).

The induced map

MK′
f (N

′) →M[1/N ′]×(A1,1×An,dL
) (A1,1,N0 ×An,dL,N )[1/dL] (3.4.6)

is representable by schemes and is an open and closed immersion. Hence MK′
f (N

′) → A1,1,N0 ×
An,dL,N [1/dL] is finite (and representable by schemes).

Lemma 3.4.4.

(1) For any open compact subgroup K ′
f as in Definition 3.4.2, the stack MK′

f
is a separated

Deligne–Mumford stack of finite type over SpecOF . If K ′
f is small, then MK′

f
is a quasi-

projective scheme over SpecOF .
(2) For any inclusion K ′

f ⊆ K ′′
f , the forgetful morphism MK′

f
→MK′′

f
[1/NK′

f
] (i.e. expand a

K ′
f -orbit to a K ′′

f orbit) is finite étale of degree |K ′′
f /K

′
f |. If K ′

f ⊆ K ′′
f is a normal subgroup,

thenMK′
f
→MK′′

f
[1/NK′

f
] is a torsor for the finite discrete group K ′′

f /K
′
f .
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Proof. The second sentence in part (2) is clear from construction (and makes sense before we know

these stacks are algebraic). When K ′
f = K ′

f (N
′) for some N ′, the claims in part (1) follow from

(3.4.6).

For general K ′
f , select N

′ = (N0, N) such that MK′
f (N

′) is a scheme and K ′
f (N

′) ⊆ K ′
f . Then

MK′
f (N

′) → MK′
f
[1/N ′] is a torsor for the finite discrete group K ′

f/K
′
f (N

′) (in particular, finite

étale), and hence admits the stack quotient presentation MK′
f
[1/N ′] ∼= [MK′

f (N
′)/(K

′
f/K

′
f (N

′))],

which shows that MK′
f
[1/N ′] is Deligne–Mumford. Picking another M ′ = (M0,M) such that

gcd(N0N,M0M) is only divisible by primes dividing NK′
f
, we find that MK′

f
[1/M ′] is Deligne–

Mumford as well. These two charts show thatMK′
f
is Deligne–Mumford, as well as separated and

finite type over SpecOF .
IfK ′

f ⊆ K ′′
f , then for any scheme S with a morphism S →MK′′

f
, the 2-fiber productMK′

f
×MK′′

f

S

is fibered in setoids, hence equivalent to a sheaf (of sets). But since MK′
f (N

′) → MK′
f
[1/N ′] is a

K ′
f/K

′
f (N

′)-torsor and affine morphisms satisfy fpqc descent [SProject, Section 0244], we conclude

that MK′
f
[1/N ′] ×MK′′

f

S is represented by a scheme. As above, we may pick some other M ′

to patch and show that the morphism MK′
f
→ MK′′

f
[1/NK′

f
] is representable by schemes. Since

MK′
f (N

′) →MK′
f
[1/N ′] andMK′

f (N
′) →MK′′

f
[1/N ′] are both finite étale surjections, we conclude

thatMK′
f
→MK′′

f
[1/NK′

f
] is finite étale by varying N ′ again (using standard facts like [SProject,

Lemma 02K6, Lemma 01KV, Lemma 0AH6, Lemma 02LS]). The remaining claims follow from

this. □

Lemma 3.4.5. Fix any prime p and a matrix T ∈ Hermm(Q) with m ≥ 0. The morphism

Z(T )K′
f (p

e) →MK′
f (p

e) is a disjoint union of closed immersions for all e≫ 0.

Proof. For e ∈ Z≥0, we define a stack (used only in this proof) M(pe) over SpecOF [1/(dLp)] as
follows. For schemes S over SpecOF [1/(dLp)], we takeM(pe)(S) to be the groupoid

M(pe)(S) :=

{
(A0, ι0, λ0, A, ι, λ, x) :

(A0, ι0, λ0, A, ι, λ) ∈M(S)

x = [x1, . . . , xm] ∈ HomOF
(A0[p

e], A[pe])m

}
. (3.4.7)

We have a commutative diagram

M(pe)

Z(T )[1/p] M .

(3.4.8)

The forgetful morphismM(pe)→M[1/p] is representable by schemes and a finite étale surjection.

Thus,M(pe) is representable by a separated Deligne–Mumford stack of finite type over SpecOF .
We claim that Z(T )→M(pe) is a closed immersion for e≫ 0. This may be checked fppf locally

on the target. Suppose S →M[1/p] is an fppf cover by a Noetherian scheme S (possible sinceM
is locally Noetherian and quasi-compact). It is enough to check that Z(T )×MS →M(pe)×MS is

a closed immersion of schemes. Since the morphism Z(T )→M (resp. M(pe)→M[1/p]) is finite

and unramified (resp. finite), we conclude that Z(T )[1/p]→M(pe) is also finite and unramified.
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To prove the claim, it remains only to check that the morphism of schemes Z(T ) ×M S →
M(pe)×MS is universally injective for e≫ 0 (for morphisms of schemes, being a closed immersion

is the same as being proper, unramified, and universally injective [SProject, Lemma 04XV]).

We first show that universal injectivity holds fiber-wise over every point s ∈ S for e sufficiently

large (with e possibly depending on s). For any point s on S with residue field k(s), we know

that Z(T )k(s) →M(pe)k(s) is universally injective for e≫ 0 (possibly depending on s) because the

map Hom(A1, A2)→ Hom(Tp(A1), Tp(A2)) is injective for abelian varieties A1, A2 over any field of

characteristic ̸= p (apply this over a geometric point mapping to s and use finiteness of Z(T )).
Being universally injective may be checked fiber-wise over S, so we need to show that there

is a value of e which works for all points s ∈ S simultaneously. We can select e ≫ 0 so that

Z(T ) ×M S → M(pe) ×M S is universally injective (hence a closed immersion) over the generic

point of each irreducible component of S. For such e, a limiting argument (“spreading out”) implies

that Z(T )×M S →M(pe)×M S is a closed immersion over an open dense subset of S. Applying

Noetherian induction on S proves the claim.

To finish the proof of the lemma, we observe that M(pe) ×M MK′
f (p

e) → MK′
f (p

e) is a fi-

nite disjoint union of isomorphisms, corresponding to the constant sheaf valued in HomOF
(L0 ⊗Z

Z/peZ, L⊗Z Z/peZ)m. Hence Z(T )K′
f (p

e) →MK′
f (p

e) is a disjoint union of closed immersions. □

3.5. Generic smoothness. We explain a generic smoothness result for special cycles (Lemma

3.5.5). The other lemmas are auxiliary. The proof proceeds by reducing to p-divisible groups over

a base where p is locally nilpotent, and then checking formal smoothness using Serre–Tate and

Grothendieck–Messing deformation theory.

We first consider p-divisible groups (see Section B.1 for a review of terminology). For primes p,

set OFp
:= OF ⊗Z Zp. Suppose p ∤ ∆ and consider schemes S over Spf OFp , i.e. S is a scheme over

SpecOF with p locally nilpotent on S. We consider tuples (Y, ι, λ) over S where

Y is a p-divisible group over S of height 2n and di-

mension n

ι : OFp → End(Y ) is an action satisfying the (n− r, r) Kottwitz sig-

nature condition, i.e. for all a ∈ OFp , the char-

acteristic polynomial of ι(a) acting on LieY is

(x− a)n−r(x− aσ)r ∈ OS [x]

(3.5.1)

λ : Y
∼−→ Y ∨ is a principal polarization whose Rosati involution

† on End(Y ) satisfies ι(a)† = ι(aσ) for all a ∈ OFp .

In the signature condition described above, we view OS as an OFp-algebra via the structure map

S → Spf OFp .

Parts of the next formal smoothness result (Lemma 3.5.1) may exist in some form in the literature,

see e.g. discussion about formal smoothness for “unramified Rapoport–Zink data” in [RZ96, 3.82]

and the reference to [Kot92, §5] given there.

Following [SProject, Section 04EW], we use the term thickening to refer to a closed immersion

which is a homeomorphism on underlying topological spaces, and the term first order thickening

for a thickening defined by a square zero ideal.
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Let S be a scheme over Spf OFp , and suppose (Y, ι, λ) is a tuple over S as in (3.5.1). There is

an associated deformation functor Def(Y,ι,λ) (possibly non-standard usage, and it will not appear

after Lemma 3.5.1) which sends a thickening S → S′ to the set of (isomorphism classes of) lifts

of (Y, ι, λ) to S′. Write S[ϵ] and S[ϵ, ϵ′] as shorthand for S ×SpecZ SpecZ[ϵ]/(ϵ2) and S ×SpecZ

SpecZ[ϵ, ϵ′]/(ϵ2, ϵϵ′, ϵ′2), respectively. In the proof of Lemma 3.5.1, we will see that the canonical

map

Def(Y,ι,λ)(S[ϵ, ϵ
′])→ Def(Y,ι,λ)(S[ϵ])×Def(Y,ι,λ)(S) Def(Y,ι,λ)(S[ϵ

′]) (3.5.2)

is an isomorphism. More generally, if M is a finite rank free OS-module and OS ⊕M denotes

the quasi-coherent OS-algebra with M an ideal of square zero, we will see that the functor M 7→
Def(Y,ι,λ)(SpecS(OS ⊕ M)) preserves fiber products over the base M = 0 (note that this holds

when Def(Y,ι,λ) is replaced by any scheme, and this is essentially the method of proof). Here Spec
S

denotes relative Spec.

For any scheme S over Spf OFp , the above considerations imply that the set Def(Y,ι,λ)(S[ϵ])

has the natural structure of a Γ(S,OS)-module in the standard way (as a “tangent space”) as in

[SGA3II, Proposition 3.6] or [SProject, Section 06I2].

Lemma 3.5.1. Let p be a prime which is unramified in OF . The deformation problem for triples

as in (3.5.1) is formally smooth of relative dimension (n− r)r in the following sense. Let S be any

scheme over Spf OFp, and let (Y, ι, λ) be a triple over S as in (3.5.1).

(1) The triple (Y, ι, λ) lifts along any first order thickening of affine schemes S → S′, i.e. the

map Def(Y,ι,λ)(S
′)→ Def(Y,ι,λ)(S) is surjective.

(2) When S = Specκ for a field κ, the κ vector space Def(Y,ι,λ)(κ[ϵ]) has dimension (n− r)r.

If (n− r)r = 0, then (Y, ι, λ) lifts uniquely along any first order thickening of schemes S → S′.

Proof. We study this lifting problem for p-divisible groups in terms of Grothendieck–Messing de-

formation theory. Let S → S′ be a first order thickening of schemes (not necessarily affine). View

S ↪→ S′ as a PD thickening, with trivial PD structure on the square zero ideal of the thickening.

Write D(Y ) for the covariant Dieudonné crystal of Y , and write D(Y )(S) and D(Y )(S′) for the

evaluation of this crystal on the PD thickenings id : S → S and S ↪→ S′ respectively. We have a

short exact sequence of OS-modules given by the Hodge filtration

0→ ΩY ∨ → D(Y )(S)→ LieY → 0 (3.5.3)

with ΩY ∨ = (LieY ∨)∨ and each OS-module above being finite locally free.

We may decompose the Hodge filtration into eigenspaces with respect to the action ι : OFp →
End(Y ) (and the structure morphism S → SpecOFp). We use superscripts (−)+ and (−)− to

denote these eigenspaces, where OFp acts linearly (resp. σ-linearly) on (−)+ (resp. (−)−) via ι.

Then we have short exact sequences

0→ Ω+
Y ∨ → D(Y )(S)+ → Lie+Y → 0 (3.5.4)

0→ Ω−
Y ∨ → D(Y )(S)− → Lie−Y → 0 (3.5.5)
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where eachOS-module above is finite locally free and, for example, we have D(Y ) = D(Y )+⊕D(Y )−.

From left to right, the modules in (3.5.4) have ranks r, n, and n − r, and the modules in (3.5.5)

have ranks n− r, n, and r respectively.

Using the polarization λ, we may identify (3.5.4) with the dual of (3.5.5). There is a choice of

sign in this identification, which plays essentially no role in this proof.

We have D(Y )(S′)|S ∼= D(Y )(S) canonically (as D(Y ) is a crystal), and Grothendieck–Messing

theory implies that lifting (Y, ι, λ) to S′ is the same as lifting the Hodge filtration (3.5.3) compatibly

with the action ι and the polarization λ. Compatibility with the ι action means that we should

lift the eigenspace decomposition in (3.5.4) and (3.5.5), and compatibility with the polarization λ

means that the resulting exact sequences should again be dual to each other (as determined by λ).

It is equivalent to lift either one of the exact sequences of (3.5.4) and (3.5.5) (one determines the

other) to a filtration of D(Y )(S′)+ or D(Y )(S′)− respectively (with no additional restrictions).

Consider the lifting problem for, say, the + eigenspace of the Hodge filtration as in (3.5.4).

Zariski locally on S′, this lifting problem may be identified with the problem of lifting an S point

to an S′ point on the Grassmannian parametrizing rank r subbundles of the rank n trivial bundle.

This Grassmannian is smooth of relative dimension (n− r)r, which proves the claims in the lemma

statement. □

The next three lemmas are used to prove Lemma 3.5.4. This latter lemma is in turn used in

the proof of generic smoothness in Lemma 3.5.5, to reduce to bases where p is locally nilpotent for

some unramified prime p. This will allow us to reduce to formal smoothness for deformations of

p-divisible groups (with certain additional structure) as proved in Lemma 3.5.1.

Lemma 3.5.2. Let A be an adic Noetherian ring, and let X be a locally Noetherian scheme over

SpecA. If XSpf A → Spf A is flat, then X → SpecA is flat at every point of X which lies over

Spf A. If X → SpecA is locally of finite type, then the same holds with “flat” replaced by “smooth”.

Proof. Here, flatness (resp. smoothness) of XSpf A → Spf A is equivalent to the requirement that,

for every scheme T with a map T → Spf A, the base changed map XT → T is flat (resp. smooth).

We first check the flatness assertion. Passing to an affine open of X, we may reduce to the case

where X = SpecB for a Noetherian ring B. Let I ⊆ A be an ideal of definition. Then XSpf A is

described by a completed tensor product, and we have XSpf A = B̂ where B̂ is the I-adic completion

of B. Since B is a Noetherian ring, the canonical map B → B̂ is flat. Since XSpf A → Spf A is flat,

we know that A → B̂ is a flat ring map. We conclude that B is flat over A at every prime in the

image of Spec B̂ → SpecB. These are precisely the points of X lying over Spf A.

Next, assume XSpf A → Spf A is smooth. By Noetherianity of A, the map f : X → SpecA is

locally of finite presentation. We have just shown that X → SpecA is flat at every point x ∈ X
which lies over Spf A. Thus, for such x ∈ X, the map f : X → SpecA is smooth at x if and only

if Xf(x) → Spec k(f(x)) is smooth at x, where k(f(x)) denotes the residue field of f(x). But since

Spec k(f(x))→ SpecA factors through Spf A→ SpecA, we conclude that Xf(x) → Spec k(f(x)) is

indeed smooth. □
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Lemma 3.5.3. Let f : X → Y be a locally of finite type (resp. locally of finite presentation)

morphism of schemes, and assume that Y is a Jacobson scheme. Then f is smooth (resp. flat) if

and only if f is smooth (resp. flat) at every point of X which lies over a closed point of Y .

Proof. Since f is locally of finite type (resp. locally of finite presentation), we know that X is a

Jacobson scheme (i.e. closed points are dense in every closed subset). Since f is smooth (resp. flat)

on an open subset of X, it is enough to check that f is smooth (resp. flat) at every closed point of

X. As f is locally of finite type and Y is Jacobson, we know that f maps closed points to closed

points [SProject, Lemma 01TB] which gives the lemma claim. □

Lemma 3.5.4. Let X be an algebraic stack, let Y be a Jacobson locally Noetherian scheme, and

let f : X → Y be a morphism which is locally of finite type. For points y ∈ Y , write ÔY,y for the

completion of the local ring at y. Then X → Y is smooth (resp. flat) if and only if X
Spf ÔY,y

→
Spf ÔY,y is smooth (resp. flat) for every closed point y ∈ Y .

Proof. Select any scheme U with a surjective smooth morphism U → X . Then U → Y is a locally

of finite type morphism of Jacobson locally Noetherian schemes, and X → Y is smooth (resp. flat)

if and only if U → Y is smooth (resp. flat). By Lemma 3.5.3, we may check smoothness (resp.

flatness) of U → Y at points of U lying over closed points of Y . If x ∈ U and y = f(x), then

U → Y is smooth (resp. flat) at x if and only if U
Spec ÔY,y

→ Spec ÔY,y is smooth at x (first

checking flatness, then checking smoothness in the fiber over the closed point). For any y ∈ Y ,

Lemma 3.5.2 implies that U → Y is smooth (resp. flat) at all points x ∈ U lying over y if and only

if U
Spf ÔY,y

→ Spf ÔY,y is smooth (resp. flat). By Lemma 3.5.3, we then see that U → Y is smooth

(resp. flat) if and only if U
Spf ÔY,y

→ Spf ÔY,y is smooth (resp. flat) for every closed point y ∈ Y .

This is equivalent to the condition that X
Spf ÔY,y

→ Spf ÔY,y is smooth (resp. flat) for all closed

points y ∈ Y , since U → X is a smooth surjection. □

Lemma 3.5.5. Let L be any non-degenerate Hermitian OF -lattice, with associated moduli stack

M. Fix T ∈ Hermm(F ).

Then there exists N ∈ Z such that Z(T )[1/(NdL∆)] is either empty21 or smooth of relative

dimension (n− r − rank(T ))r over SpecOF [1/(NdL∆)].

We may take N such that for p ∤ NdL∆, there exists g ∈ GLm(OFp) with

tgTg =

(
Idrank(T ) 0

0 0

)
(3.5.6)

where tg denotes the conjugate transpose of g.

Proof. Fix a prime p ∤ dL∆ such that there exists g ∈ GLm(OFp) satisfying (3.5.6). By Lemma

3.5.4, it is enough to check that the base change Z(T )Spf OFp
is either empty or smooth of relative

dimension (n− r − rank(T ))r over Spf OFp .

The morphism Z(T )Spf OFp
→ Spf OFp is representable by algebraic stacks and locally of finite

presentation. Thus Z(T )Spf OFp
→ Spf OFp is smooth if and only if it is formally smooth [SProject,

Lemma 0DP0].

21Following the Stacks project [SProject, Definition 0055], our convention is that dim ∅ = −∞.
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Let S → S′ be a first order thickening of affine schemes, and assume S′ is equipped with a

morphism to Spf OFp . To check formal smoothness of Z(T )Spf OFp
→ Spf OFp , we need to show

that every object (A0, ι0, λ0, A, ι, λ, x) ∈ Z(T )(S) admits a lift to S′.

Form (X0, ι0, λ0), whereX0 = A0[p
∞] is the p-divisible group ofA0 with induced action ι0 : OFp →

End(X0) and principal polarization λ0 : X0 → X∨
0 . Similarly associate (X, ι, λ) to (A, ι, λ), where

X = A[p∞] is the p-divisible group of A. Note that the polarization λ : X → X∨ is principal because

p ∤ dL∆. Write also x = [x1, . . . , xm] for the corresponding m-tuple of morphisms xi : X0 → X.

By Serre–Tate, lifting (A0, ι0, λ0, A, ι, λ, x) from S to S′ is the same as lifting (X0, ι0, λ0, X, ι, λ, x)

from S to S′.

Using an element g ∈ GLm(OFp) satisfying (3.5.6) as a “change of basis” for Xm
0 , we obtain we

obtain an OF -linear “orthogonal splitting” X ∼= X
rank(T )
0 × Y . That is, Y is a p-divisible group

with action ιY : OFp → End(Y ), and a principal polarization λY : Y → Y ∨ whose Rosati involution

† satisfies ιY (a)† = ιY (a
σ) for all a ∈ OF . Under the described identification X ∼= X

rank(T )
0 × Y ,

the polarization λ on X is given by (λ0)
rank(T )×λY . The map x : Xm

0 → X may be identified with

the projection Xm
0 → X

rank(T )
0 onto the first rank(T ) factors, followed by the canonical inclusion

X
rank(T )
0 → X

rank(T )
0 × Y .

Note that the actions of OFp on X0, X, and Y have signatures (1, 0), (n − r, r), and (n − r −
rank(T ), r) respectively (in the sense of (3.5.1)). These considerations also show that rank(T ) ≤
n− r if Z(T )Spf OFp

is nonempty.

The triple (X0, ι0, λ0) admits a unique lift to S′ as in Lemma 3.5.1. The projection map x : Xm
0 →

X
rank(T )
0 clearly lifts to S′ as well. So it remains only to lift (Y, ιY , λY ) from S to S′. Such a lift

exists by formal smoothness of the corresponding deformation problem described in Lemma 3.5.1.

We apply the same lemma to compute tangent spaces (e.g. after passing to an étale cover by a

scheme), which shows that the relative dimension is (n− r − rank(T ))r. □

Remark 3.5.6. Taking T = ∅ (or T = 0) in Lemma 3.5.5 and varying over non-degenerate Hermit-

ian OF -lattices L satisfying L ⊆ L∨ and |L∨/L| = d, we see that M (n−r, r)(d) → SpecOF [1/(d∆)]

is smooth of relative dimension (n − r)r for every d ∈ Z≥0. If M is associated with any non-

degenerate Hermitian OF -lattice L (not necessarily with L ⊆ L∨), this then implies that M →
SpecOF [1/(dL∆)] is smooth of relative dimension (n− r)r.

4. Arithmetic special cycle classes

4.1. Hermitian vector bundles. Given a smooth algebraic stack X over SpecC, a Hermitian

vector bundle Ê on X is the following functorial assignment: for every morphism S → X with S a

scheme smooth over SpecC, the assignment gives a vector bundle on S with a smooth Hermitian

metric on the analytification. We sometimes write Ê = (E , ∥−∥) where E is the underlying line bun-

dle on X and ∥−∥ is the norm associated with the smooth Hermitian metric (on the analytification),

defined functorially.

Let (R,Σ, c∞) be an arithmetic ring in the sense of Gillet–Soulé [GS90, §3.1], i.e. R is an excellent

regular Noetherian integral domain (e.g. Dedekind domains with fraction field of characteristic 0
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or fields), Σ is a finite nonempty set of injective homomorphisms τ : R→ C, and c∞ : CΣ → CΣ is

a conjugate-linear involution of C⊗Z R-algebras. Write K for the fraction field of R.

Suppose X is an algebraic stack which is flat and finite type over SpecR. Write Xτ := X ×SpecK,τ

SpecC. Assume that the generic fiber XK is smooth over SpecK. A Hermitian vector bundle on

X is a vector bundle E on X equipped with a smooth Hermitian metric on E|Xτ for each τ ∈ Σ,

such that this collection of metrics is conjugation invariant (meaning c∞-invariant). We write

P̂ic(X ) for the group of (isomorphism classes of) Hermitian line bundles, with group structure

given by the tensor product. We use the notation L̂ = (L, ∥−∥) for a Hermitian line bundle with

underlying line bundle L and ∥−∥ its norm (meaning a collection of norms {∥−∥τ}τ∈Σ). We also

write ∥−∥∞ =
∏
τ∈Σ ∥−∥τ .

Next, we discuss stacky degrees of Hermitian line bundles. We fix the arithmetic ring (R,Σ, c∞)

associated with R = OK [1/N ] for a number field K and an integer N ∈ Z, i.e. Σ is the set of all

embeddings τ : K → C, and c∞ is induced by complex conjugation. For the rest of Section 4.1, we

assume that

X is a reduced 1-dimensional Deligne–Mumford stack which is proper and flat

over SpecR.

(4.1.1)

Here, dimension is used in an absolute sense rather than a relative one (e.g. we could have X =

SpecR).

Let L̂ = (L, ∥−∥) be a Hermitian line bundle on X . For each complex place v of OK , we

set ∥−∥v := ∥−∥τ1 ∥−∥τ2 where τ1, τ2 : K → C are the two embeddings corresponding to v. The

Arakelov arithmetic degree d̂eg(L̂) of L̂ on X is valued in RN := R/(
∑

p|N Q · log p), and may be

described as follows. If X = SpecOE [1/N ] for a number field E, we have the standard definition

d̂eg(L̂) := −
∑
v∤N

log ∥s∥v with ∥s∥v := q−ordv(s)
v if v <∞ (4.1.2)

where the sum runs over all places v of E (Archimedean included) with v ∤ N , the quantity qv is

the cardinality of the residue field at v, and s is any rational section of L.
If X is integral (equivalently, reduced and irreducible by quasi-separatedness), select any number

field E with a finite surjection SpecOE [1/N ]→ X and set

d̂eg(L̂) := 1

deg(E/XK)
d̂eg(L̂|SpecOE [1/N ]) (4.1.3)

where deg(E/XK) denotes the degree of the finite étale morphism SpecE → XK . This definition

does not depend on the choice of E or the morphism SpecOE [1/N ] → X , since any two such

choices may be covered by finite surjections from a third such choice SpecOE′ [1/N ] (and these

finite surjections can be made compatible with the maps to X ).

Remark 4.1.1. Existence of E as in the preceding paragraph follows from some general theory.

Indeed, a general fact about Noetherian Deligne–Mumford stacks with separated diagonal [LMB00,

Théorème 16.6] implies that there exists a scheme Z with a morphism Z → X which is finite,

surjective, and generically étale (in the sense that ZU → U is étale for a dense open substack

U ⊆ X ). Selecting an irreducible component of Z which surjects onto X , we may assume that Z
50



is also integral. Thus Z is a 1-dimensional integral scheme which is proper and flat over SpecR.

Such a map Z → SpecR must be quasi-finite, hence also finite. If E denotes the fraction field of

Z, the normalization of Z must be Z̃ = SpecOE [1/N ].

One can check that the definition of stacky arithmetic degree in (4.1.3) recovers the definition of

[KRY04, (4.4)] and [KRY06, §2.1] which counts geometric points weighted by orders of automor-

phism groups.22

In the general case when X is not necessarily irreducible, we take

d̂eg(L̂) :=
∑
ξ

d̂eg(L̂|Xξ
)

where the sum runs over generic points ξ of irreducible components Xξ of X .
The preceding discussion showed that X admits a finite surjection from a scheme which is finite

over SpecR, hence X → SpecR is also quasi-finite (in the sense of [SProject, Definition 0G2M]).

Suppose X ′ and X are Deligne–Mumford stacks which both satisfy the hypotheses from (4.1.1),

and consider a morphism f : X ′ → X over SpecR. Let L̂ be a Hermitian line bundle on X .
First consider the case where X is irreducible. We say that the morphism X ′

K → XK has de-

gree deg(X ′
K/XK) := deg(X ′

K/K)/ deg(XK/K) (with stacky degrees of 0-cycles over fields as in

(A.1.10)). We have d̂eg(f∗L̂) = deg(X ′
K/XK)d̂eg(L̂). Next, consider the general case where X is

not necessarily irreducible. We say that X ′
K → XK has constant degree d if X ′

K ×XK
Xξ,K → Xξ,K

has degree d for every irreducible component Xξ of X . In this case, we have

d̂eg(f∗L̂) = d · d̂eg(L̂). (4.1.4)

4.2. Arithmetic Chow rings. We fix definitions for arithmetic Chow rings with rational coeffi-

cients.

Let (R,Σ, c∞) be an arithmetic ring (Section 4.1) and writeK for the fraction field of R. Suppose

X is a scheme which is separated, flat, and finite type over SpecR with smooth and quasi-projective

generic fiber XK . There are associated Gillet-Soulé arithmetic Chow groups Ĉhm(X) in codimen-

sions m ≥ 0. If X is moreover regular, these groups form an arithmetic Chow ring Ĉh∗(X)Q (with

Q-coefficients) [GS90, Theorem 4.2.3].

Let L be any non-degenerate Hermitian OF -lattice of rank n, with associated moduli stackM.

Consider the arithmetic ring (R,Σ, c∞) associated with R = SpecOF [1/dL]. We define arithmetic

Chow groups forM by limiting over level structure: for any nonzero integer N , set

Ĉh∗(M[1/N ])Q := lim
K′

f

Ĉh∗(MK′
f
[1/N ])Q (4.2.1)

where K ′
f varies over all small levels as in Section 3.4 (so that each MK′

f
is a scheme). Similar

limiting procedures appeared in [BBK07] and [BH21, §4.4]; see also [Gil09] for more on arithmetic

Chow rings of Deligne–Mumford stacks.

SinceM→ SpecOF [1/dL] is smooth, we know thatM is regular. Hence we obtain an arithmetic

Chow ring Ĉh∗(M[1/N ])Q via the intersection product for each Ĉh∗(MK′
f
[1/N ])Q.

22In loc. cit., the functorial definition of Hermitian line bundle should also include the additional assumption of

complex conjugation invariance as above.
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Suppose Z → M is a finite morphism of algebraic stacks with Z → SpecOF [1/dL] proper and

Z equidimensional of dimension d. Then we define the height of Z with respect to any Hermitian

line bundle L̂ onM as follows: if ZK′
f
:= Z ×MMK′

f
, the quantity

d̂eg(L̂d|Z) :=
1

[K ′
f (1) : K

′
f ]
d̂eg(L̂d|ZK′

f

) ∈ RdLNK′
f

= R/(
∑

p|dLNK′
f

Q · log p) (4.2.2)

does not depend on the choice of small level K ′
f , where d̂eg(L̂d|ZK′

f

) is the arithmetic height as

in [BGS94, Proposition 2.3.1, Remarks(ii)] (see also [Zha95]) calculated by replacing ZK′
f
with

its pushforward cycle on MK′
f
. Varying K ′

f , we obtain the height d̂eg(L̂d|Z) ∈ RdL . We will be

primarily interested in the case where d = 1 with Z reduced and flat over SpecOF [1/dL]. In this

case, d̂eg(L̂|Z) is the (stacky) arithmetic degree of L̂ restricted to Z, as discussed in Section 4.1.

4.3. Hodge bundles. Given an abelian scheme π : A → S of relative dimension n, we consider

the Hodge bundles ΩA := π∗Ω
1
A/S and ωA := π∗

∧nΩA. Here ΩA and ωA are locally free of ranks

n and 1 respectively. If e : S → A denotes the identity section, there are canonical isomorphisms

ΩA ∼= e∗ΩA/S ∼= (LieA)∨. These Hodge bundles are (contravariantly) functorial in A, and their

formation commutes with arbitrary base change [BBM82, Proposition 2.5.2].

When S is a scheme which is smooth over SpecC, the analytification of ωA may be equipped

with a Hermitian metric (Faltings or Hodge metric), normalized as follows. The fiber of ωA over

any s ∈ S(C) is canonically identified with H0(As, ωAs). Viewing H
0(As, ωAs) as the 1-dimensional

C-vector space of holomorphic n-forms on As(C), we take the metric on ωA at s to be

(α, β) =

(
i

2π

)n ∫
As(C)

β ∧ ᾱ (4.3.1)

for α, β ∈ H0(As, ωAs). We call the resulting Hermitian line bundle ω̂A := (ωA, ∥−∥) a metrized

Hodge bundle. This metric on ωA is functorial for isomorphisms between abelian schemes A over

S.

Next, suppose S = SpecC and suppose λ : A→ A∨ is a quasi-polarization. There is an associated

Hermitian metric on Ω∨
A
∼= Lie(A) which we normalize as follows: if λ is a polarization and λ(a) =

(t∗aL) ⊗ L−1 for an ample line bundle L on A (where ta is translation by a), then the Chern

class c1(L) ∈ H2(A,Z) defines a Z-valued alternating form ψ on H1(A,Z) (following the usual

conventions, [Mum85, §I], except our Hermitian pairings are conjugate linear in the first variable)

and a positive definite Hermitian pairing

(x, y) := π
√
|∆|
(
ψ(ix, y)− iψ(x, y)

)
(4.3.2)

on LieA. If instead λ is a quasi-polarization, the associated Hermitian pairing is m−1 times the

Hermitian pairing of mλ for any m ∈ Z>0 such that mλ is a polarization. If dimA = 1 and if λ is

the unique principal polarization of A, the induced dual metric on ΩA ∼= (LieA)∨ is
√
|∆|−1

times

the Faltings metric (cf. the proof of [BHKRY20II, Lemma 5.1.4]).

Over an arbitrary smooth scheme S → SpecC, any quasi-polarization λ : A → A∨ defines a

smooth Hermitian metric on LieA, given fiberwise by the construction above. We also call the

resulting Hermitian vector bundle Ω̂∨
A a metrized Hodge bundle.
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Next, let (R,Σ, c∞) be an arithmetic ring, and suppose X is an algebraic stack which is flat

and finite type over SpecR, and whose generic fiber is smooth. Suppose we are given a relative

abelian scheme A over X (equivalently, a functorial assignment of abelian schemes A → S to

objects x ∈ X (S), for R-schemes S). Formation of the metrized Hodge bundle ω̂A is functorial,

hence defines a metrized Hodge bundle ω̂ on X . If A is equipped with a quasi-polarization, then

there is similarly a metrized Hodge bundle Ω̂∨ on X .
Let L be a non-degenerate Hermitian OF -lattice of rank n, with associated moduli stackM. If L

is self-dual and signature (n−1, 1), we write E for the pullback of the tautological bundle (Definition

3.2.6) alongM→M (n− 1, 1)◦. Otherwise, we write E for the pullback of the tautological bundle

(Defintion 3.1.7) along M → M (n − r, r)[1/∆]. We similarly write Ω for the pullback to M
of the Hodge bundle from M (n − r, r)[1/∆] in the non exotic smooth case (resp. M (n − 1, 1)◦

in the exotic smooth case) to M (where Ω is the rank n Hodge bundle). After base change to

SpecOF [1/∆], the (dual) Hodge bundle Ω∨ onM admits a (canonical) decomposition Ω∨[1/∆] =

Ω∨[1/∆]+⊕Ω∨[1/∆]− (with Ω∨[1/∆]− = E ∨[1/∆]) where the OF -action (via ι) on Ω∨[1/∆]+ (resp.

Ω∨[1/∆]−) is OF -linear (resp. σ-linear).
Equip Ω∨[1/∆] with the Hermitian metric which is

(x, y) := 4π2eγ
√
|∆|
(
ψ(ix, y)− iψ(x, y)

)
(4.3.3)

in complex fibers (i.e. multiply the Hermitian metric from (4.3.2) by 4πeγ) where γ is the Euler–

Mascheroni constant. We remark that the normalization constant 4πeγ has appeared previously

in similar contexts, e.g. [KRY04, (0.4)] [KRY06, §7] [BHKRY20, §7.2]. We refer to loc. cit. for

possible conceptual explanations of this constant.

Then E ∨[1/∆] ⊆ Ω∨[1/∆] (via decomposition in previous paragraph) inherits a Hermitian metric

by restriction. This makes E ∨ into a Hermitian vector bundle Ê ∨.

Write Ω0 for the Hodge bundle on M0. Equip the dual Ω∨
0 with the metric described fiberwise

by (4.3.2), giving a Hermitian line bundle Ω̂∨
0 . By the metrized dual tautological bundle onM, we

mean

Ê∨ := Ω̂∨
0 ⊗ Ê ∨ (4.3.4)

where we have suppressed pullbacks from notation. The metric on Ê∨ is the tensor product of

the metrics described above. This definition of Ê∨ is similar to [BHKRY20, §2.4, §7.2], though in

a different setup (we are considering not-necessarily principal polarizations). Taking a dual gives

the metrized tautological bundle Ê . For more discussion on these metric normalization choices, see

Section 12.2. We write E∨ for underlying line bundle of Ê∨.
For readers interested in Faltings height, we also consider the metrized Hodge (determinant)

bundle ω̂ on M, which is pulled back from the Hodge determinant bundle ω on M (n − r, r) and

with metric normalized as in (4.3.1).

Suppose A0 → SpecOE is any (relative) elliptic curve with OF -action, where E is a number

field. If ω̂A0 denotes the associated metrized Hodge bundle (normalized as in (4.3.1)), we recall

that the Faltings height of A0 is

hCM
Fal :=

1

[E : Q]
d̂eg(ω̂A0) =

1

2

L′(1, η)

L(1, η)
+

1

2

Γ′(1)

Γ(1)
+

1

4
log |∆| − 1

2
log(2π) (4.3.5)
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where η is the quadratic character associated to F/Q, and Γ is the usual gamma function. This

comes from the classical Chowla–Selberg formula (the statement above is as in [KRY04, Proposition

10.10]). It will be convenient to define the height constants

hCM
tau := −hCM

Fal +
1

4
log |∆| − 1

2
log(4πeγ) hCM

Ê∨ := −hCM
Fal −

1

4
log |∆|+ hCM

tau . (4.3.6)

These will re-appear in Sections 11.9 and 22.1.

4.4. Arithmetic special cycle classes. Let L be a non-degenerate Hermitian OF -lattice of rank
n, with associated moduli stackM. For the rest of Section 4, we assume L has signature (n−1, 1).

Consider an m × m Hermitian matrix T ∈ Hermm(Q), assume m ≤ n, and form the associated

special cycle Z(T ) → M. One expects to be able to construct an associated arithmetic special

cycle class [Ẑ(T )] ∈ Ĉhm(M)Q.

For arbitrary singular T , there is no proposed definition of [Ẑ(T )] in the literature. In gen-

eral, Z(T )H has larger-than-expected dimension. The stack Z(T ) could also have components

with larger-than-expected dimension in positive characteristic (occurs already for nonsingular T ).

Available methods in the literature for treating the non-Archimedean theory (K-theoretic and

derived algebro-geometric) do not incorporate the Archimedean place in general, as needed for

arithmetic intersection theory (see introduction).

The analogue of the “linear invariance” approach of [KRY04, §6.4] (there for Shimura curves) is

to first define [Ẑ(T ♭)] for nonsingular T ♭, to consider tγTγ = diag(0, T ♭) for some γ ∈ GLm(OF )
with T ♭ nonsingular, and to define [Ẑ(T )] by intersecting [Ẑ(T ♭)] with a power of some metrized

tautological bundle (possibly with additional Archimedean adjustment). This is not literally pos-

sible in the unitary setting, where OF may have class number ̸= 1 (in particular, γ as above may

not exist). One also needs to verify independence of the choice of γ.

For arbitrary T ∈ Hermm(Q), we propose to define [Ẑ(T )] as a sum

[Ẑ(T )] := [Ẑ(T )H ] +
∑

p prime
p∤dL

[LZ(T )V ,p] ∈ Ĉhm(M)Q. (4.4.1)

We construct [Ẑ(T )H ] using the horizontal part Z(T )H and an appropriate Green current gT,y

(4.5.5) with an additional parameter y ∈ Hermm(R)>0. The element [LZ(T )V ,p] arises from a

class LZ(T )V ,p ∈ grmMK ′
0(Z(T )Fp)Q corresponding to the “vertical part” of Z(T ) at p (4.6.10).

The classes LZ(T )V ,p will be zero for all but finitely many primes p. We define LZ(T )V ,p using a

“p-local” variant of the linear invariance strategy above.

We will show that [Ẑ(T )] satisfies the “linear invariance” property

[Ẑ(T )] = [Ẑ(tγTγ)] (4.4.2)

for all γ ∈ GLm(OF ), where [Ẑ(T )] is formed with respect to y ∈ Hermm(R)>0 and [Ẑ(T )] is
formed with respect to γ−1ytγ−1.

In fact, we prove refined statements. We show

[Ẑ(T )H ] = [Ẑ(tγTγ)H ] (4.4.3)
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for the Green currents gT,y defined in Section 12.4 (where the current gtγTγ,γ−1ytγ−1 is used on

the right-hand side). Moreover, we show gT,y = gtγTγ,γ−1ytγ−1 (Section 12.4); this property is also

satisfied for the Garcia–Sankaran currents in [GS19, (4.38)] (which we do not use for our arithmetic

Siegel–Weil results).

For any γ ∈ GLm(OF,(p)) ∩Mm,m(OF ), we show that the pullback

grmMK ′
0(Z(T )Fp)Q ← grmMK ′

0(Z(tγTγ)Fp)Q (4.4.4)

along Z(T )Fp → Z(tγTγ)Fp (defined in (3.3.6)) sends LZ(tγTγ)V ,p to LZ(T )V ,p (4.6.11).

4.5. Horizontal arithmetic special cycle classes. Consider any m × m Hermitian matrix

T ∈ Hermm(Q). The horizontal arithmetic special cycle class [Ẑ(T )H ] should involve some extra

Archimedean data, e.g. from a Green current gT,y (which we allow to depend on a parameter

y ∈ Hermm(R)>0, as is typical in the literature).

Given an equidimensional complex manifold X, recall that a (p, q)-current on X is a continuous

linear map ΩdimX−p,dimX−q
c (X) → C on compactly supported smooth forms of degree (dimX −

p,dimX − q), where ΩdimX−p,dimX−q
c (X) has the usual colimit topology. A (p, p)-current is real

if it is induced by a continuous real-valued linear map on real (p, p)-forms. Given a top degree

current g on X (i.e. a distribution), we say that g is integrable or that
∫
X g converges (possibly

non-standard usage) if g extends (necessarily uniquely) to a continuous map C∞
b1
(X)→ C, where

C∞
b1 (X) := {f ∈ C∞(X) : |f(x)| ≤ 1 for all x ∈ X} (4.5.1)

with topology given by sup-norms ranging over all compact subsets K ⊆ X. In this case, we write∫
X g for the value of g on 1 ∈ C∞

b1
(X). Suppose α is a (measurable) locally L1 form of top degree

on X. If α is integrable, then the associated distribution [α] on X is integrable, and we have∫
X [α] =

∫
X α. We use the orientation and sign conventions of [GS90].

Returning to the moduli stack M → SpecOF from above, choose any embedding F → C and

form the base changesMC :=M×SpecOF
SpecC and Z(T )C := Z(T )×SpecOF

SpecC, etc.. By a

(p, q)-current onMC, we mean a system of currents g = (gK′
f
)K′

f
= (Ωn−1−p,n−1−q

c (MK′
f ,C)→ C)K′

f

compatible with pullback of currents as we vary K ′
f among all small levels. We say a (p, q)-current

onMC is real if the associated current at each small level K ′
f is real. If g is a current of top degree

onM its integral is defined as ∫
MC

g :=
1

[K ′
L,f : K ′

f ]

∫
MK′

f
,C

gK′
f

(4.5.2)

for any sufficiently small level K ′
f (conditional on convergence). This definition does not depend

on the choice of small level.

Suppose gT,y is any real (m − 1,m − 1) current on MC which satisfying a modified current

equation, i.e. such that

− 1

2πi
∂∂gT,y + δZ(T )C ∧ [c1(Ê∨C )m−rank(T )] (4.5.3)

is (represented by) a smooth (m,m)-form (for all small levels K ′
f ), where c1(Ê∨C ) is the Chern form

of the Hermitian line bundle Ê∨C . We call gT,y a Green current. We typically write gT,y instead of

gT,y,K′
f
to lighten notation, for understood level K ′

f .
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For each small level K ′
f , pick a representative (Z0, g0) for the self-intersection arithmetic cycle

class ĉ1(Ê∨)m−rank(T ) ∈ Ĉhm−rank(T )(MK′
f
)Q. We can assume that Z0 intersects Z(T )K′

f
properly

in the generic fiber (moving lemma) and that g0 is a Green form of logarithmic type for Z0 (in the

sense of [GS90, §4]).
The intersection pairing for Chow groups with supports (as in [GS90, §4]) gives a class Z(T )K′

f ,H
·

Z0 ∈ ChmZ(T )K′
f
,H ∩Z0

(MK′
f
)Q. We set

[Ẑ(T )K′
f ,H

] := [(Z(T )K′
f ,H
· Z0, gT,y + g0 ∧ δZ(T )K′

f
,C
)] ∈ Ĉhm(MK′

f
[1/N ])Q (4.5.4)

(where we have suppressed the 1/N notation from the left). As in [GS19, (5.158)], a short com-

putation (using well-definedness of arithmetic intersection products) shows that this class does not

depend on the choice of (Z0, g0). One can verify that gT,y + g0 ∧ δZ(T )K′
f
,C

satisfies a Green current

equation for (Z(T )K′
f
∩ Z0)C by combining the Green current equation for g0 with the modified

current equation of gT,y (see also [GS19, §5.4]).
These classes [Ẑ(T )K′

f ,H
] thus form a compatible system as K ′

f varies, and hence give an element

[Ẑ(T )H ] := ([Ẑ(T )K′
f ,H

])K′
f
∈ Ĉhm(M[1/N ])Q. (4.5.5)

This construction of [Ẑ(T )H ] is essentially that of [GS19, §5.4]. If gT,y = gtγTγ,γ−1ytγ−1 , note that

we automatically have the “linear invariance” equality

[Ẑ(T )H ] = [Ẑ(tγTγ)H ]. (4.5.6)

Currents gT,y satisfying (4.5.3) were studied by Garcia–Sankaran [GS19, Theorem 1.1 and §4].
We choose to use the star-product approach of Kudla [Kud97b] to define currents gT,y for our main

results (for rankT ≥ n − 1 or detT ̸= 0 with T not positive definite), and postpone the explicit

description of gT,y to Section 12.4 (12.4.11). Our definition of gT,y is that of [Liu11, Theorem 4.20]

in the nonsingular cases. When T ∈ Hermn(Q) is singular with rank(T ) = n − 1, our definition

is new (still based on star products). These Green currents satisfy gT,y = gtγTγ,γ−1ytγ−1 (Section

12.4), so linear invariance (4.5.6) is satisfied.

4.6. Vertical special cycle classes. We define vertical special cycle classes via K0 groups. We

remind the reader that dL ∈ Z is an integer associated to the lattice L as discussed before Definition

3.1.2. Recall that dL = 1 if L is self-dual of signature (n− 1, 1) with 2 ∤ ∆.

For our notation and definitions regarding K0-groups for Deligne–Mumford stacks, we refer to

Appendix A. Note that the stacky K0 groups we use are different from those used in [HM22]. It is

also possible to avoid stacky K0 groups entirely by working with compatible systems of classes in

towers of level structure.

Fix any prime p ∤ dL and set

M(p) :=M×SpecZ SpecZ(p) Z(T )(p) := Z(T )×SpecZ SpecZ(p) (4.6.1)

for any T ∈ Hermm(Q). SinceM(p) admits a finite étale cover by a scheme (add away-from-p level

structure), we may consider filtrations for K ′
0 groups as in Definition A.1.2.
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Let T ∈ Hermm(Q) be any m × m Hermitian matrix (with entries in F ). We first describe a

“p-local” derived special cycle class LZ(T )(p) ∈ FmM(p)
K ′

0(Z(T )(p))Q (with FmM(p)
:= Fn−m denoting

the m-th step of the codimension filtration) before extracting a “vertical” piece.

For any t ∈ Q, we define LZ(t)(p) ∈ F 1
M(p)

K ′
0(Z(t)(p))Q to be the element

LZ(t)(p) :=

[OZ(t)(p) ] if t ̸= 0

[OM(p)
]− [E ] if t = 0.

Write t1, . . . , tm for the diagonal entries of T . Using the intersection pairing of Lemma A.2.1 as

well as compatibility with dimension filtrations from Lemma A.2.2 via Lemma 3.4.5, we form the

intersection LZ(t1)(p) · · · LZ(tm)(p) and define LZ(T )(p) by the restriction

FmMK ′
0(Z(t1)(p) ×M(p)

· · · ×M(p)
Z(tm)(p))Q FmM(p)

K ′
0(Z(T )(p))Q

LZ(t1)(p) · · · LZ(tm)(p) LZ(T )(p).
(4.6.2)

This displayed restriction map comes from the disjoint union decomposition in (3.3.3). We call
LZ(T )(p) the p-local derived special cycle class23 associated with T .

The following lemma is a “p-local” version of linear invariance, and is proved using a variant on

ideas from [How19; HM22]. The map in (4.6.3) was defined in (3.3.6).

Lemma 4.6.1. Given any T ∈ Hermm(Q) and any γ ∈ GLm(OF,(p)) ∩Mm,m(OF ), the pullback

along

Z(T )(p) → Z(tγTγ)(p) (4.6.3)

sends LZ(tγTγ)(p) to LZ(T )(p).

Proof. By Lemma 3.3.3, we know that (4.6.3) is an open and closed immersion.

The ring OF,(p) is a Euclidean domain, with Euclidean function ϕ(a) :=
∑

pi
vpi(a) ·fi for nonzero

a ∈ OF,(p) (summing over primes pi in OF lying over p, with residue cardinality pfi). Row reducing

via the Euclidean algorithm shows that GLm(OF,(p)) is generated by elementary matrices.

Any γ ∈ GLm(OF,(p)) may thus be expressed as γ = γ1γ
−1
2 where each γ1 and γ2 are products of

elementary matrices lying in GLm(OF,(p))∩Mm,m(OF ). If moreover γ ∈ GLm(OF,(p))∩Mm,m(OF ),
the commutative diagram

Z(tγ1Tγ1)(p)

Z(T )(p) Z(tγTγ)(p)

(4.6.4)

shows that it is enough to prove the lemma when γ ∈ GLm(OF,(p)) ∩Mm,m(OF ) is an elementary

matrix.

23This is the construction of [HM22, Definition 5.1.3] (there for orthogonal Shimura varieties). This construction

also underlies the intersection numbers considered in [KR14] for non-degenerate T . We differ slightly from those

references by localizing at p, since we will only be interested in the “vertical” part of LZ(T )(p). The “horizontal part”

is accounted for by Section 4.5.
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If γ is a permutation matrix, the lemma is clear. Next, consider a ∈ O×
F,(p) ∩OF . For any t ∈ Q,

note that Z(t)(p) → Z(ata)(p) is an open and closed immersion (by Lemma 3.3.3 again). This fact

implies the present lemma for the case where γ = diag(a, 1, . . . , 1).

It remains to check the case where γ is an elementary unipotent matrix. This case follows as

in the analogous result [HM22, Proposition 5.4.1] (there for GSpin).24 The latter is proved using

methods from [How19] (the analogous local linear invariance result on Rapoport–Zink spaces). We

are also using global analogues of [LL22, Lemma 2.36, Lemma 2.37, Lemma 2.41] (there about a

tautological bundle on an exotic smooth Rapoport–Zink space) which may be proved similarly, e.g.

our Lemma 3.2.5 replaces [LL22, Lemma 2.36] in the global setup. Alternatively, linear invariance

for γ ∈ GLm(OF ) should also follow from the derived algebro-geometric methods in [Mad23]. □

Next, we define a derived vertical special cycle class

LZ(T )V ,p ∈ grmMK ′
0(Z(T )Fp)Q (4.6.5)

at p, where Z(T )Fp
:= Z(T )×SpecZ SpecFp.

First consider the case where detT ̸= 0. Using Lemmas 3.5.5 and A.1.5 as well as (3.3.5), we

decompose

grmM(p)
K ′

0(Z(T )(p))Q = grmM(p)
K ′

0(Z(T )(p),H )Q ⊕ grmMK ′
0(Z(T )Fp)Q (4.6.6)

into a “horizontal” part and a “vertical” part. This uses nonsingularity of T (via Lemma 3.5.5), so

that Z(T )(p),H ∩ Z(T )Fp is of dimension < n −m. We are also using the dévissage pushforward

identification K ′
0(Z(T )Fp)

∼−→ K ′
0(Z(T )V ,p), with Z(T )V ,p as in (3.3.5). The above decomposition

of grmM(p)
K ′

0(Z(T )(p))Q is independent of the choice of ep in (3.3.5). We define LZ(T )V ,p to be given

by the projection

grmMK ′
0(Z(T )(p))Q grmMK ′

0(Z(T )Fp)Q

LZ(T )(p) LZ(T )V ,p.
(4.6.7)

If T = diag(0, T ♭) (with detT ♭ ̸= 0), we set

LZ(T )V ,p := (E∨)m−rank(T ) · LZ(T ♭)V ,p ∈ grmMK ′
0(Z(T )Fp)Q (4.6.8)

where E∨ stands for the class [OM(p)
] − [E ] ∈ F 1

M(p)
(M(p))Q. Given arbitrary T (not necessarily

block diagonal), select any γ ∈ GLm(OF,(p)) ∩Mm,m(OF ) such that

tγTγ = diag(0, T ′♭) (4.6.9)

where detT ′♭ ̸= 0. Set T ′ := diag(0, T ′♭). We define LZ(T )V ,p to be the pullback class

grmM(Z(T )Fp)Q grmM(Z(T ′)Fp)Q

LZ(T )V ,p LZ(T ′)V ,p

(4.6.10)

along the open and closed immersion Z(T )Fp → Z(T ′)Fp induced by γ.

24Strictly speaking, our setup for stacky K′
0 groups is slightly different from that of [HM22], see Appendix A. This

makes no difference in the proof of the cited result. Alternatively, one can replace M(p) by a finite étale cover by a

scheme to reduce to the case of schemes, where our setup agrees with [HM22, §A.2].
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By Lemma 4.6.1 (applied to T ′♭, in the notation above), the preceding definition of LZ(T )V ,p does
not depend on the choice of γ. Moreover, the class Z(T )V ,p is linearly invariant in the following

sense: given any γ ∈ GLm(OF,(p))∩Mm,m(OF ) (no additional assumptions on tγTγ), the pullback

along

Z(T )Fp → Z(tγTγ)Fp (4.6.11)

sends LZ(tγTγ)V ,p to LZ(T )V ,p. This follows from the construction of LZ(T )V ,p.
We see that LZ(T )V ,p = 0 for all but finitely many primes p. Taking pushforward, we obtain

associated cycle classes [LZ(T )V ,p] ∈ Ĉhm(M)Q. The preceding constructions may be repeated

(essentially verbatim) with K ′
f level structure away from p. The resulting classes LZ(T )(p),K′

f
and

LZ(T )V ,p,K′
f
will be compatible with pullback for varying level.

4.7. Degrees of arithmetic special cycles. The moduli stackM→ SpecOF [1/dL] considered
in Section 4.4 may not be proper. For a robust arithmetic degree theory via arithmetic Chow

groups for arbitrary T ∈ Hermm(Q), one might instead consider arithmetic special cycle classes on

a suitably compactified moduli space.

If the special cycle Z(T ) is already proper over SpecOF [1/dL], we can directly define the arith-

metic degree without boundary contributions which should result from a compactification: set

d̂eg([Ẑ(T )] · ĉ1(Ê∨)n−m) :=
(∫

MC

gT,y ∧ c1(Ê∨C )n−m
)

(4.7.1)

+ d̂eg((Ê∨)n−rank(T )|Z(T )H )

+
∑

p prime
p∤dL

degFp
(LZ(T )V ,p · (E∨)n−m) log p

conditional on convergence of the integral. Since compactification ofM plays no other role in this

work, we take this approach. As in Section 4.5, the notation MC mean M×SpecOF
SpecC for a

choice of F → C (the choice does not matter).

The quantity in (4.7.1) is an element of RdL = R/(
∑

p|dL Q · log p). Here d̂eg((Ê∨)n−m|Z(T )H ) is

the height of Z(T )H with respect to the metrized tautological bundle Ê∨ (Sections 4.2 and 4.3).

The symbol LZ(T )V ,p · (E∨)n−m is shorthand for the intersection product

LZ(T )V ,p · ([OM]− [E ])n−m ∈ grnMK ′
0(Z(T )Fp)Q = gr0K

′
0(Z(T )Fp)Q, (4.7.2)

defined in Lemma A.2.1. With Z(T )Fp viewed as a proper scheme over Fp, the notation degFp

refers to the degree map deg : gr0K
′
0(Z(T )Fp)Q → Q as defined in (A.1.12).

Certainly Z(T ) → SpecOF [1/dL] is proper if Z(T ) is empty (e.g. if T is not positive semidefi-

nite). In this case, the right-hand side of (4.7.1) consists only of the integral
∫
MC

gT,y ∧ c1(Ê∨C )n−m.
We show below that Z(T )→ SpecOF [1/dL] is also proper if rank(T ) ≥ n− 1, so (4.7.1) applies

in this case as well.

Lemma 4.7.1. Fix a Hermitian matrix T ∈ Hermm(Q) with rank(T ) ≥ n − 1 and m ≥ 0. Let

κ be a field, and consider (A0, ι0, λ0, A, ι, λ, x) ∈ Z(T )(κ). There exists an OF -linear isogeny
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(A0)
n−1 × A− → A where A− is an elliptic curve with OF -action. After replacing κ by a finite

extension, we may take A− = Aσ0 where Aσ0 = A0 but with OF -action ι0 ◦ σ.

Proof. Write x = [x1, . . . , xm], where the xi are OF -linear homomorphisms xi : A0 → A. Since T

has rank ≥ n−1, we may assume (rearranging the elements xi if necessary) that x
♭ = [x1, . . . , xn−1]

has nonsingular Gram matrix (x♭, x♭). Then the map

f : A

√
∆◦(x†1×···×x†n−1)−−−−−−−−−−−−→ An−1

0 (4.7.3)

is a homomorphism and a surjection of fppf sheaves. We form the “isogeny complement” in the

standard way, i.e. we let A− be the reduced connected component of ker f . If j : A− → A is the

natural inclusion, then the map (A0)
n−1 ×A− x1×···×xn−1×j−−−−−−−−−−→ A is an OF -linear isogeny.

Note that A− is OF -linearly isogenous to an elliptic curve with OF action of signature (0, 1):

if char(k) = p > 0 with p nonsplit in OF , then A− is supersingular, so apply Skolem–Noether to

End(A−)⊗Q; otherwise, A− automatically has signature (0, 1) because A has signature (n− 1, 1).

If κ is algebraically closed, any two elliptic curves over κ with OF -action of the same signature

are OF -linearly isogenous. This is classical: lift to characteristic zero to reduce to κ = C (the

moduli stack M0 → SpecOF is étale; more classically, see Deuring [Deu41]); recall that elliptic

curves over C with OF -action are defined and isogenous over Q. By a standard limiting argument,

we conclude that A− and Aσ0 are OF -linearly isogenous over a finite extension of the (not necessarily

algebraically closed) original field κ. □

Remark 4.7.2. If p is a prime which splits in OF and if rank(T ) ≥ n, then Z(T )Fp = ∅.
This is a standard argument (e.g. [KR14, Lemma 2.21]): if κ is a field of characteristic p and

(A0, ι0, λ0, A, ι, λ, x) ∈ Z(T )(κ), arguing as in Lemma 4.7.1 shows that A is OF -linearly isogenous

to An0 . This contradicts Lemma 4.7.1, because there is no nonzero OF -linear map A0 → Aσ0 as A0

and Aσ0 have OF -action of opposite signature (e.g. there are no nonzero maps of the underlying

ordinary p-divisible groups).

We say a characteristic p > 0 geometric point (A0, ι0, λ0, A, ι, λ) of M lies in the supersingular

locus if A0 and A are supersingular abelian varieties (i.e. the associated p-divisible groups are

supersingular). The following corollary also holds in arbitrary signature (n− r, r) (i.e. all but the
last sentence of Lemma 4.7.1 is valid for arbitrary signature (n− r, r)).

Corollary 4.7.3. Let p be a prime which is nonsplit in OF . Fix T ∈ Hermm(Q) with rank(T ) ≥
n−1 andm ≥ 0. The morphism Z(T )Fp

→MFp
factors (set-theoretically) through the supersingular

locus onMFp
.

Proof. Follows from Lemma 4.7.1 and Deuring’s classical results on endomorphisms of elliptic curves

in positive characteristic [Deu41] (i.e. over a field of characteristic p > 0, the p-divisible group of

an elliptic curve with OF -action is supersingular (resp. ordinary) if p is nonsplit (resp. split) in

OF ). Here we used the notation Z(T )Fp
:= Z(T )×SpecZ SpecFp and similarly forM. □

Lemma 4.7.4. Fix T ∈ Hermm(Q) with rank(T ) ≥ n− 1 and m ≥ 0. Then the horizontal special

cycle Z(T )H is proper and quasi-finite over SpecOF [1/dL].
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Proof. By Lemma 3.5.5, we know the generic fiber Z(T )H ,F → SpecF is smooth of relative di-

mension 0. Hence each generic point of Z(T )H is the image of a map SpecE → Z(T ) for some

number field E, corresponding to an object (A0, ι0, λ0, A, ι, λ, x) ∈ Z(T )(E). By Lemma 4.7.1, we

know that A is isogenous to a product of elliptic curves with complex multiplication by OF . It is

a classical result of Deuring that such elliptic curves have everywhere potentially good reduction,

so A0 and A have everywhere potentially good reduction [Deu41; ST68]. Enlarging E if necessary,

we can thus extend SpecE → Z(T ) to a morphism SpecOE [1/dL] → Z(T ) (the Néron mapping

property ensures that the datum (ι0, λ0, ι, λ, x) extends as well; the polarizations must extend to

polarizations as in the proof of [FC90, Theorem 1.9]).

Hence each irreducible component of Z(T )H may be covered by a morphism SpecOE [1/dL] →
Z(T ) for some number field E. Since Z(T ) is quasi-compact and separated, this implies that

Z(T )→ SpecOF [1/dL] is proper and quasi-finite. □

Lemma 4.7.5. For m ≥ 0, suppose T ∈ Hermm(Q) has rank(T ) ≥ n− 1. Then the structure map

Z(T )→ SpecOF [1/dL] is proper.

Proof. We already know that the horizontal part Z(T )H is proper over SpecOF [1/dL], so it suffices

to check that every irreducible component of Z(T ) in characteristic p ∤ dL is proper over SpecFp.
It is enough to check that Z(T )Fp

→ SpecFp is proper by fpqc descent (e.g. use away-from-p level

structure to replace Z(T )Fp
with a finite cover by a scheme, then use fpqc descent for morphisms of

schemes). It is enough to check properness of the map Z(T )Fp,red
→ SpecFp on reduced substacks

(e.g. by local Noetherianity of these algebraic stacks, or because Z(T )Fp
→ SpecFp is locally of

finite type).

The supersingular locus onMFp
is proper (follows from the proof of [Oor74, Theorem 1.1a]; and

finiteness of the forgetful map M (d) → An,d in Section 3.1). Properness of Z(T )Fp
→ SpecFp now

follows from Corollary 4.7.3. □
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Part 2. Local special cycles

5. Moduli spaces of p-divisible groups

We review some unitary Rapoport–Zink spaces [RZ96] and their special cycles, which will be

used in p-adic uniformization of the moduli stacks from Section 3. Some notation on p-divisible

groups is collected in Appendix B.1.

Fix a prime p and let F/Qp be a degree 2 étale algebra, i.e. F/Qp is an inert quadratic extension,

a ramified quadratic extension, or F = Qp × Qp. If F/Qp is ramified, we assume p ̸= 2. Write

a 7→ aσ for the nontrivial automorphism σ of F over Qp. We write OF for the integral closure of

Zp in F (hence OF = Zp × Zp in the split case). If F/Qp is ramified, we write ϖ for a uniformizer

of OF satisfying ϖσ = −ϖ.

We use the usual notation Q̆p for the completion of the maximal unramified extension of Qp,

with ring of integers Z̆p.
For F/Qp nonsplit, let F̆ be the completion of the maximal unramified extension of F . If F/Qp is

split, set F̆ = Q̆p, and view F̆ as an F -algebra by choosing one of the two morphisms of Qp-algebras

F → F̆ . We also equip F̆ with the structure of a Q̆p-algebra (taking the identity map if F/Qp is

split).

In all cases, let OF̆ ⊆ F̆ be the ring of integers and let k be the residue field of F̆ . There is a

canonical map OF → OF̆ (using the above choice of F → F̆ when F/Qp is split).

We write ∆ ⊆ Zp (resp. d ⊆ OF ) for the discriminant ideal (resp. different ideal), which is

∆ = Zp and d = OF in the split case. We also abuse notation and write d for a chosen generator

of the different ideal satisfying dσ = −d, taking d = ϖ in the ramified case.

In the split case, let e+ (resp. e−) be the nontrivial idempotent in OF which maps to 1 ∈ OF̆
(resp. 0 ∈ OF̆ ). Given an OF -module M , we write M = M+ ⊕M− where e+ projects to M+

and e− projects to M−. We use similar notation f = f+ ⊕ f− for morphisms f : M → M ′ of

OF -modules. We often use this for p-divisible groups X with OF action, e.g. X = X+ ×X− (and

similarly for OF -linear quasi-homomorphisms).

5.1. Rapoport–Zink spaces.

Definition 5.1.1. Let S be a formal scheme and let n ≥ 1 be an integer. By a Hermitian p-divisible

group over S, we mean a tuple (X, ι, λ) where

X is a p-divisible group over S of height 2n and dimension n

ι : OF → End(X) is a ring homomorphism

λ : X → X∨ is a quasi-polarization satisfying:

(1) (Action compatibility) The Rosati involution † on End0(A) satisfies

ι(a)† = ι(aσ) for all a ∈ OF .

An isomorphism of Hermitian p-divisible groups is an isomorphism of underlying p-divisible

groups which respects the OF -actions and polarizations.
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In Part 2, we only consider Hermitian p-divisible groups over formal schemes S equipped with a

morphism S → Spf OF̆ , and we assume that X is supersingular (resp. ordinary) if F/Qp is nonsplit

(resp. split).

We primarily discuss Hermitian p-divisible groups satisfying either of the following two condi-

tions.

(2) (Principal polarization) The quasi-polarization λ is a principal polarization.

(2◦) (Polarization condition ◦) Assume n is even if F/Qp is ramified. The quasi-polarization ∆λ

is a polarization, and ker(∆λ) = X[ι(d)].

In these cases, we say that (X, ι, λ) is principally polarized or ◦-polarized respectively.25 If F/Qp is

ramified, we also use the alternative terminology ϖ−1-modular.

Given an integer r with 0 ≤ r ≤ n, we next consider

(1) (Kottwitz (n − r, r) signature condition) For all a ∈ OF , the characteristic polynomial of

ι(a) acting on LieX is (T − a)n−r(T − aσ)r ∈ OS [T ].
for pairs (X, ι), i.e. n-dimensional p-divisible groups X over a formal scheme S with action ι : OF →
End(X). Here we view OS as an OF -algebra via S → Spf OF̆ → SpecOF .

If (X, ι, λ) is a Hermitian p-divisible group of signature (n− r, r), then (Xσ, ισ, λσ) with

Xσ = X ισ = ι ◦ σ λσ = λ (5.1.1)

is a Hermitian p-divisible group of signature (r, n − r). We use similar notation (X, ι) ↔ (Xσ, ισ)

without the presence of a polarization. This allows us to switch between signatures (n− r, r) and
signature (r, n− r) (e.g. for comparison with the literature).

From here on, we always implicitly restrict to signature (n− 1, 1) (and even n) when discussing

◦-polarized Hermitian p-divisible groups for ramified F/Qp. In this case, we also impose

(2) (Pappas wedge condition) For all a ∈ OF , the action of ι(a) on LieX satisfies

2∧
(ι(a)− a) = 0 and

n∧
(ι(a)− aσ) = 0.

(3) (Pappas–Rapoport–Smithling–Zhang spin condition) For every geometric point s of S, the

action of (ι(a)− a) on LieXs is nonzero for some a ∈ OF
The signature (n − 1, 1) condition implies that the equation involving

∧n in the wedge condition

is automatic, and that the wedge condition is empty if n = 2.

We temporarily allow p = 2 even if F/Qp is ramified. Recall that there exists a supersingular

(resp. ordinary) p-divisible group X0 of height 2 and dimension 1 over k, and that X0 is unique up

to isomorphism (this also holds for any algebraically closed field κ over k). In the supersingular case

X0 is given by a Lubin–Tate formal group law, and in the ordinary case we have X0
∼= µµµp∞×Qp/Zp.

We have End(X0) ∼= OD (resp. End(X0) ∼= Zp×Zp) in the supersingular case (resp. ordinary case)

where OD is the unique maximal order in the quaternion division algebra D over Qp (e.g. [Gro86]

or [Wew07, §1]).
Quasi-polarizations on X0 exist and are unique up to Q×

p scalar, and there exists a principal

polarization λX0 on X0 (unique up to Z×
p scalar). The induced Rosati involution on End(X0) is

25The local analogue of Footnote 18 applies as well.
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the standard involution (this can be verified on on the Dieudonné module, see e.g. [RSZ17, Page

2205]), hence induces the nontrivial Galois involution on F for any embedding F ↪→ End0(X0) (if

such an embedding exists).

From now on, we assume X0 is supersingular (resp. ordinary) if F/Qp is nonsplit (resp. split).

Then there exists an embedding j : OF ↪→ End(X0). Given such a j, form (X0, j) and (Xσ
0 , j

σ) as

above. There is an OF -linear isogeny of degree |∆|−1
p

X0 ⊗Zp OF X0 ×Xσ
0

x⊗ a (j(a)x, j(aσ)x).

(5.1.2)

where X ⊗Zp OF is the Serre tensor p-divisible group (B.1.1), with its Serre tensor OF -action. See
also [KR11, Lemma 6.2] (there in the inert case for p ̸= 2, but the version in (5.1.2) allows for

p = 2).

Suppose λX0 is a principal polarization of X0. Under the map in (5.1.2), the (OF -action com-

patible) product polarization λX0 × λσX0
on X0 ×Xσ

0 pulls back to the polarization

λX0 ⊗ λtr : X0 ⊗Zp OF → (X0 ⊗Zp O∗
F )
∼= X∨

0 ⊗Zp O∗
F (5.1.3)

where O∗
F := HomZp(OF ,Zp) and λtr : OF → O∗

F is induced by the symmetric bilinear pairing

trF/Qp
(aσb) on OF . Indeed, after picking a Zp-basis {1, α} for OF to identify X0 ⊗Zp OF ∼= X2

0,

the map in (5.1.2) is given by the matrix

ϕ =

(
1 α

1 ασ

)
∈M2,2(OF ) (5.1.4)

and detϕ generates the different ideal of OF /Zp (so Smith normal form shows deg ϕ = |∆|−1
p ).

Identifying X∨
0 ⊗Zp O∗

F
∼= X∨2

0 using the basis of O∗
F dual to {1, α}, the preceding claim about

pullback polarizations follows because (tϕσ)ϕ (where tϕσ means conjugate transpose) is the Gram

matrix for the basis {1, α} and the trace pairing on OF .
If p ̸= 2, the polarization λX0 ⊗ λtr coincides with the polarization on X0 ⊗Zp OF described in

[KR11, (6.2)] (inert case, with modification as in [RSZ17, Footnote 4]) and [RSZ17, (3.4)] (ramified

case, though we normalize differently).

Suppose ιX0 : OF ↪→ End(X0) is an action of signature (1, 0). The pair (X0, ιX0) exists and is

unique up to isomorphism. In the split case, the element ιX0(e
+) is projection to µµµp∞ and ιX0(e

−)

is projection to Qp/Zp. In the ramified case, note that (X0, ιX0) is simultaneously of signature

(1, 0) and (0, 1).

Fix (X0, ιX0) as above, and form (Xσ
0 , ι

σ
X0

). We have

HomOF
(X0,X

σ
0 )
∼=

OF if F/Qp is nonsplit

0 if F/Qp is split
(5.1.5)

asOF -modules by precomposition. Using End(X0) ∼= OD in the nonsplit cases, we find that theOF -
module HomOF

(X0,X
σ
0 ) is generated by any isogeny of degree p if F/Qp is inert, and is generated

by an isomorphism if F/Qp is ramified (namely any element a ∈ O×
D such that conjugation by a

induces the nontrivial Galois involution on F ). We have EndOF
(X0) = OF in all cases.
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Suppose λX0 is a principal polarization of X0. If F/Qp is unramified, the triple (X0, ιX0 , λX0)

is unique (up to isomorphism): given another polarization λ′X0
, we have λ−1

X0
◦ λ′X0

∈ Z×
p and know

that the norm map NF/Qp
: O×

F → Z×
p is surjective. If F/Qp is ramified, the same reasoning shows

that there are two choices of λX0 (differing by a Z×
p scalar) because NF/Qp

(O×
F ) ⊆ Z×

p has index 2.

Fix a choice of (X0, ιX0 , λX0).

We now re-impose our running assumption that p ̸= 2 if F/Qp is ramified. Fix any ◦-polarized
Hermitian p-divisible group (X, ιX, λX) of signature (n − r, r) over k. Such triples exist and are

unique up to F -linear quasi-isogenies preserving polarizations exactly. This uniqueness may be

proved via Dieudonné theory: see [Vol10, §1] (inert case, but we allow p = 2 by the same proof)

and [RSZ17, Proposition 3.1] [RSZ18, §6] (ramified case). In the split case, we have a stronger

uniqueness statement.

Lemma 5.1.2. For F/Qp split, the triple (X, ιX, λX) is unique up to isomorphism. This also holds

over any algebraically closed field extension κ of k.

Proof. Decompose X = X+ ×X− using the idempotents in the OF = Zp × Zp action given by ιX.

Then X+ and X− are the unique ordinary p-divisible groups over κ of height n and the correct

dimension (n − r and r, respectively). Uniqueness of λX (up to isomorphism) corresponds to the

following fact: there is a unique self-dual Hermitian OF -lattice (up to isomorphism) of any given

rank. □

For existence, we may construct (X, ιX, λX) as follows. For F/Qp unramified, we can take

X = (X0)
n−r × (Xσ

0 )
r (with the product OF -action and polarization).

For F/Qp ramified, we can take X = (X0)
n−2× (X0⊗ZpOF ) using the Serre tensor construction

(B.1.1). The OF -action ιX is diagonal on (X0)
n−2 and given by the Serre tensor OF -action on

X0 ⊗Zp OF . We can take the product quasi-polarization λX of X given by

− ιX0(ϖ)−2 ◦ (λX0 ⊗ λtr) on X0 ⊗Zp OF , and (5.1.6)(
0 λX0 ◦ −ιX0(ϖ)−1

λX0 ◦ ιX0(ϖ)−1 0

)
× · · · ×

(
0 λX0 ◦ −ιX0(ϖ)−1

λX0 ◦ ιX0(ϖ)−1 0

)
︸ ︷︷ ︸

(n−2)/2 times

on Xn−2
0 .

This is the construction of [RSZ17, §3.3] (but rescaled).
Given a principally polarized triple (X0, ι0, λ0) of signature (1, 0) over some base scheme S, a

framing similitude quasi-isogeny ρ0 is an F -linear quasi-isogeny X0,S → X0,S such that

ρ∗0(λX0,S
) = bλ0,S for some b ∈ Q×

p (5.1.7)

where the subscript indicates base-change to S := S×SpecOF̆
Spec k (and where b ∈ Q×

p really means

a section of the constant sheaf). We call (X0, ι0, λ0, ρ) a framed similitude tuple. An isomorphism

of framed similitude tuples f : (X0, ι0, λ0, ρ0) → (X ′
0, ι

′
0, λ

′
0, ρ

′
0) is an OF -linear isomorphism of

p-divisible groups f : X0 → X ′
0 such that f∗(λ′0) and λ0 agree up to Z×

p -scalar and also ρ′0 ◦fS = ρ0.

Given a ◦-polarized triple (X, ι, λ) of signature (n− r, r) over some base scheme S, we define a

similitude framing quasi-isogeny ρ : XS → XS in the same way. A framing quasi-isogeny ρ : XS →
XS is given by the stricter requirement b ∈ Z×

p . In these two cases, we call the datum (X, ι, λ, ρ)
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a framed similitude tuple and a framed tuple, respectively. In both cases, isomorphisms of two

such tuples are defined as before: isomorphisms of p-divisible groups which are OF -linear, preserve
polarizations up to Z×

p , and commute with framings.

Definition 5.1.3. We consider three Rapoport–Zink spaces over Spf OF̆ , given by the (set-valued)

functors

N (1, 0)′(S) := {isomorphism classes of framed similitude tuples (X0, ι0, λ0, ρ0) over S}

N (n− r, r)′(S) := {isomorphism classes of framed similitude tuples (X, ι, λ, ρ) over S}

N (n− r, r)(S) := {isomorphism classes of framed tuples (X, ι, λ, ρ) over S}

for schemes S over Spf OF̆ . Here, signature (1, 0) and principal polarizations are understood for

N (1, 0)′. Signature (n− r, r) and ◦-polarizations are understood for N (n− r, r)′ and N (n− r, r).

These Rapoport–Zink spaces do not depend on the choices of framing objects (up to functorial

isomorphism). The functor N (n − r, r) is canonically isomorphic to its variant where instead

we require framing quasi-isogenies and isomorphisms of framed tuples to preserve polarizations

exactly (not just up to Z×
p scalar). If S is a formal scheme, we also write e.g. N (n − r, r)(S) :=

Hom(S,N (n− r, r)).

Lemma 5.1.4. Each of N (1, 0)′, N (n−r, r)′, and N (n−r, r) is represented by a locally Noetherian

formal scheme which is formally locally of finite type and separated over Spf OF̆ . Each irreducible

component of the reduced subschemes is projective over k.

Proof. Representability, local Noetherianity, and formally locally of finite type-ness follow via

[RZ96, Theorem 2.16]; various closedness statements can be checked via [RZ96, Proposition 2.9],

which holds verbatim with “isogeny” replaced by “homomorphism”. Projectivity of the reduced

irreducible components follows from [RZ96, Proposition 2.32], also using [RSZ17, Proposition 3.8]

in the ramified case. Separatedness now follows because this can be checked on underlying reduced

subschemes (then apply the valuative criterion). □

Lemma 5.1.5. The formal scheme N (n−r, r) is regular and the structure morphism N (n−r, r)→
Spf OF̆ is formally smooth of relative dimension (n− r, r).

Proof. We know the structure map N (n− r, r)→ Spf OF̆ is formally smooth of relative dimension

(n−r, r) via [Mih22, Proposition 1.3] in the unramified case (also Section 3.5, where we allow p = 2)

and [RSZ17, Proposition 3.8] for the ramified case. We conclude N (n− r, r) is regular because the

map to Spf OF̆ is formally smooth and formally locally of finite type. □

For F/Qp ramified, the Rapoport–Zink space N (n − 1, 1) is often called exotic smooth in the

literature, following the terminology of [RSZ17].

Lemma 5.1.6. There is an isomorphism

F×/O×
F N (1, 0)′

a (X0, ιX0 , λX0 , a · idX0)

∼

(5.1.8)

where the left-hand side is viewed as a constant formal scheme over Spf OF̆ .
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Proof. In the nonsplit case, [How19, Proposition 2.1] states that N (1, 0)′ is a disjoint union of

copies of Spf OF̆ , so it is enough to check the claim on k-points. The claim on k-points follows

from uniqueness of the triple (X0, ιX0 , λX0) (up to isomorphism preserving polarizations up to Z×
p

scalar) and the equality End0F (X0) = F .

The split case holds via the following similar argument. The map N (1, 0)′(κ) → N (1, 0)′(κ′)

is bijective for any extension of algebraically closed fields κ ⊆ κ′ (essentially by uniqueness of the

triple (X0, ιX0 , λX0), which holds over any algebraically closed field of characteristic p). So the

reduced subscheme N (1, 0)′red is isomorphic to a (discrete) disjoint union of copies of Spec k. We

also see that the map F×/O×
F → N (1, 0)′ is bijective on k-points (this follows as in the nonsplit

case). To finish, note that N (1, 0)′ is formally étale over Spf OF̆ (e.g. by Grothendieck–Messing

theory as in Section 3.5). □

Definition 5.1.7. By the canonical lifting of (X0, ιX0 , λX0), we mean the tuple (X0, ιX0 , λX0 , ρX0)

over Spf OF̆ corresponding (via Lemma 5.1.6) to the unique section Spf OF̆ → N (1, 0)′ associated

to the element 1 ∈ F×/O×
F .

Definition 5.1.8. We define the open and closed subfunctor N ′ ⊆ N (1, 0)′ ×N (n− r, r)′ as

N ′(S) :=

{
(X0, ι0, λ0, ρ0, X, ι, λ, ρ) :

ρ∗0(λX0,S
) = b0λ0,S ρ∗(λX,S) = bλS

with b0 = b in Q×
p /Z×

p

}
for schemes S over Spf OF̆ .

With b as above and a ∈ F× any element with NF/Qp
(a) = b in Q×

p /Z×
p , there is an isomorphism

N ′ N (1, 0)′ ×N (n− r, r)

(X0, ι0, λ0, ρ0, X, ι, λ, ρ) (X0, ι0, λ0, ρ0, X, ι, λ, a
−1ρ).

∼

(5.1.9)

Whenever we write (X0, ι0, λ0, ρ0, X, ι, λ, ρ) for a (functorial) point of N ′, we mean an object as on

the left of (5.1.9) (i.e. ρ preserves polarizations up to Q×
p scalar).

The functorial assignment (X, ι, λ, ρ) 7→ LieX defines a locally free sheaf Lie on N (n − r, r).
In the case of signature (n − 1, 1), there is a unique maximal local direct summand F ⊆ Lie of

rank n − 1 such that the ι action on F (resp. Lie /F) is OF -linear (resp. σ-linear). The ramified

case is proved in [LL22, Lemma 2.36] (and in the unramified case, we have a canonical eigenspace

decomposition Lie = F ⊕ (Lie /F) for the OF -action).
Consider the canonical lifting (X0, ιX0 , λX0 , ρX0) over Spf OF̆ (Definition 5.1.7). Given any

Spf OF̆ -scheme S, we write D(X0,S)(S) for evaluation of the (covariant) Dieudonné crystal D(X0,S)

at id : S → S, with associated Hodge filtration step F 0D(X0,S)(S). The assignment S 7→ F 0D(X0,S)(S)

defines a (trivial) line bundle on N , which we denote Lie∨0 . The principal polarization λX0 induces

an identification (LieX0,S)
∨ ∼= (LieX∨

0,S)
∨ and the latter is F 0D(X0,S)(S).

Definition 5.1.9. The tautological bundle E on N (n− 1, 1) is the line bundle whose dual is E∨ :=

Hom(Lie∨0 ,Lie /F).

The definition of E is taken from [How19, Definition 3.4] (at least in the inert case). The line

bundle E on N (n − 1, 1) is a local analogue of the global tautological bundle (Section 4.3, also
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Definitions 3.1.7 and 3.2.6). We are recycling the notation E (but the global tautological bundle

pulls back to E under Rapoport–Zink uniformization, see e.g. Section 11.8).

5.2. Local special cycles. We define certain local special cycles on Rapoport–Zink spaces, fol-

lowing [KR11, Definition 3.2] (there in the inert case). Retain notation from Section 5.1.

The space of local special quasi-homomorphisms means the F -module

W := Hom0
F (X0,X). (5.2.1)

If F/Qp is nonsplit, then W is free of rank n (see also [RSZ17, Lemma 3.5] in the ramified case).

If F/Qp is split, then W is a free F -module of rank n − r (because HomOF
(X0,X

σ
0 ) = 0 in the

split case, in contrast with HomOF
(X0,X

σ
0 )
∼= OF in the nonsplit cases). In the split case only, set

W⊥ := Hom0
F (X

σ
0 ,X). In the nonsplit cases, set W⊥ = 0.

Set

V = W ⊕W⊥ V0 = Hom0
F (X0,X0). (5.2.2)

In all cases, these are free F -modules of rank n and 1, respectively.

We equip W, W⊥, and V0 with the (non-degenerate) Hermitian pairings (x, y) = x†y ∈
End0F (X0) = F . We give V the Hermitian form making W and W⊥ orthogonal. We have

ε(V) = (−1)r if F/Qp is nonsplit (resp. ε(V) = 1 if F/Qp is split). This follows upon inspecting

the explicit framing tuples constructed in Section 5.1 (see [RSZ17, Lemma 3.5] for the ramified

case).

Definition 5.2.1 (Kudla–Rapoport local special cycles). Given any set L ⊆W, there is a associ-

ated local special cycle

Z(L)′ ⊆ N ′ (resp. Z̃(L) ⊆ N (n− r, r)) (5.2.3)

which is the subfunctor consisting of tuples (X0, ι0, λ0, X, ι, λ, ρ) (resp. (X, ι, λ, ρ)) over schemes S

over Spf OF̆ such that, for all x ∈ L, the quasi-homomorphism

ρ−1 ◦ xS ◦ ρ0 : X0,S → XS (resp. ρ−1 ◦ xS ◦ ρX0,S
: X0,S → XS) (5.2.4)

lifts to a homomorphism X0 → X (resp. X0,S → X). Here (X0, ιX0 , λX0 , ρX0) is the canonical

lifting.

In the preceding definition, such lifts are unique (if they exist) by Drinfeld rigidity for quasi-

homomorphisms of p-divisible groups. We know that Z(L)′ ⊆ N ′ and Z̃(L) ⊆ N (n − r, r) are

closed subfunctors (hence locally Noetherian formal schemes) by [RZ96, Proposition 2.9] for quasi-

homomorphisms. From the definition, it is clear that Z(L)′ and Z̃(L) depend only on the OF -span
of L.

The isomorphism N ′ ∼−→ N (1, 0)′ ×N (n− r, r) of (5.1.9) induces an isomorphism

Z(L)′ ∼−→ N (1, 0)′ × Z̃(L). (5.2.5)

Lemma 5.2.2. Let L ⊆W be any subset. If Z(L)′ ̸= ∅, then (x, y) ∈ d−1 for all x, y ∈ L.

Proof. If Z(L)′ ̸= ∅, then Z(L)(k)′ ̸= ∅ because Z(L)′ → Spf OF̆ is formally locally of finite type.

If Z(L)(k)′ ̸= ∅ and x, y ∈ L, we find dx†y ∈ EndOF
(X0) = OF by the ◦-polarization condition

defining N (n− r, r), where d is the different ideal. □
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If F/Qp is nonsplit, set Z(L) := Z̃(L) for any subset L ⊆W. If F/Qp is split, we will instead

define Z(L) as a certain open and closed subfunctor (see (5.4.4)) for later notational uniformity.

In all cases, we write Z(L)H ⊆ Z(L) (horizontal special cycle) for the flat part of Z(L), i.e. the
largest closed formal subscheme which is flat over Spf OF̆ .

5.3. Actions on Rapoport–Zink spaces. Consider the groups

I0 := {γ0 ∈ End0F (X0) : γ
†
0γ0 ∈ Q×

p } I := {γ ∈ End0F (X) : γ†γ ∈ Q×
p } (5.3.1)

I ′ := {(γ0, γ) ∈ I0 × I : γ†0γ0 = γ†γ} I1 := {γ ∈ End0F (X) : γ†γ = 1}. (5.3.2)

We have I0 = F× (canonically). Using this identification, there is an isomorphism I ′ → I0 × I1
given by (γ0, γ) 7→ (γ0, γ

−1
0 γ). We have actions

I

⟳ N (n− r, r)′ I1
⟳ N (n− r, r) (5.3.3)

(X, ι, λ, ρ) 7→ (X, ι, λ, γ ◦ ρ) (X, ι, λ, ρ) 7→ (X, ι, λ, γ ◦ ρ)

I ′

⟳ N ′ (5.3.4)

(X0, ι0, λ0, ρ0, X, ι, λ, ρ) 7→ (X0, ι0, λ0, γ0 ◦ ρ0, X, ι, λ, γ ◦ ρ).

These actions are compatible with the isomorphisms I ′ ∼= I0 × I1 and N ′ ∼= N (1, 0)′ ×N (n− r, r).
We have isomorphisms

I0 GU(V0)
∼ I1 U(W)× U(W⊥)∼ (5.3.5)

where γ ∈ I1 acts on V as x 7→ γ ◦ x, and similarly for V0.

For any subset L ⊆W with associated local special cycles Z ′(L) ⊆ N ′ and Z̃(L) ⊆ N (n− r, r),
the actions of I ′ and I1 described above satisfy

(γ0, γ)(Z(L)′) = Z(γLγ−1
0 )′ γ(Z̃(L)) = Z̃(γL). (5.3.6)

We will also have γ(Z(L)) = Z(γ(L)) (already checked in the nonsplit cases; in the split case, this

will be clear from the definition, see (5.4.4)).

5.4. Discrete reduced subschemes. In the nonsplit cases (at least if p ̸= 2), the reduced sub-

scheme N (n− 1, 1)red of N (n− 1, 1) admits a stratification by Deligne–Lusztig varieties, described

by a certain Bruhat–Tits building [VW11; Wu16]. Later, we will use these results implicitly via

citation to [LZ22a; LL22].

In this section, we further discuss some cases where the reduced subscheme is discrete (continuing

to allow p = 2 if F/Qp is unramified).

In the split case, set

L := HomOF
(X0,X) L⊥ := HomOF

(Xσ
0 ,X). (5.4.1)

In the nonsplit case, define L in the same way but take L⊥ := 0. Let K1,L ⊆ U(W) and K1,L⊥ ⊆
U(W⊥) be the respective stabilizers.

Lemma 5.4.1. Consider signature (n − r, r) = (1, 1) if F/Qp is nonsplit (resp. any signature

(n− r, r) if F/Qp is split).
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(1) The framing object (X, ιX, λX) is unique up to isomorphism. This also holds over any

algebraically closed field κ over k, at least if F/Qp is unramified.

(2) The reduced scheme N (n− r, r)red is discrete (i.e. a disjoint union of copies of Spec k). If

F/Qp is inert (resp. ramified), then N (1, 1)red is one point (resp. two points).

(3) The lattices L ⊆ W and L⊥ ⊆ W⊥ are maximal integral lattices. In the nonsplit cases,

L ⊆W = V is the unique maximal integral lattice.

(4) The group I1 ∼= U(W)×U(W⊥) acts transitively on N (n− r, r)(k). Consider the resulting

surjection

N (n− r, r)(k) U(W)/K1,L × U(W⊥)/K1,L⊥

(X, ιX, λX, (γ, γ
⊥)) (γ, γ⊥).

(5.4.2)

If F/Qp is unramified, this map is a bijection. If F/Qp is ramified, this map is 2-to-1. If

F/Qp is nonsplit, the set U(W)/K1,L × U(W⊥)/K1,L⊥ has size 1.

(5) Consider the bijective identification

U(W)/K1(L)× U(W⊥)/K1(L
⊥)


maximal full-rank integral OF -lattices N ⊆ V

where N =M ⊕M⊥ with

M ⊆W and M⊥ ⊆W⊥


(γ, γ⊥) γ(L)⊕ γ⊥(L⊥).

Given any subset L ⊆ W, the subset Z̃(L)(k) ⊆ N (n − r, r)(k) is identified (via (5.4.2))

with the pre-image of the set of lattices {N : L ⊆ N}.

Proof.

(1) In the inert case, this follows from Dieudonné theory as in [Vol10, Proposition 1.10] (but

we allow p = 2 by the same method), diagonalizability of Hermitian OF -lattices, and the

following fact: consider the rank 2 Hermitian OF -lattice Λ with pairing (−,−) specified by

the Gram matrix (
1 0

0 p

)
, (5.4.3)

and also write (−,−) for the induced pairing on Λ⊗OF
W (κ)[1/p] (which is “sesquilinear”

for the Frobenius onW (κ)[1/p]). If x ∈ Λ⊗OF
W (κ)[1/p] is any element with (x, x) ∈W (k),

then x ∈ Λ⊗OF
W (κ) (so Λ⊗OF

W (κ) satisfies a certain “unique maximal integral lattice”

property). This computation shows that N (1, 1)(k) is a single point if F/Qp is inert.

The ramified case follows from [RSZ17, Lemma 6.1]. The split case was already verified

in Lemma 5.1.2.

(2) In the unramified case, part (1) implies N (n − r, r)(k) → N (n − r, r)(κ) is bijective for

every algebraically closed field extension κ over k. Discreteness then follows because N (n−
r, r)red → Spec k is locally of finite type. If F/Qp is inert, N (1, 1)(k) being a single point

was already discussed above. The ramified case is [RSZ17, Lemma 6.1].
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(3) By part (1), we may assume (X, ιX, λX) is the explicit tuple constructed in Section 5.1.

The claim can then be verified explicitly, using (5.1.5) and the surrounding discussion. In

the split case, L and L⊥ will be self-dual. In the inert case, L admits a Gram matrix with

basis diag(1, p). In the ramified case, L admits a Gram matrix with basis diag(1,−a) for

some a ∈ Z×
p which is a non-norm, i.e. a ̸∈ NF/Qp

(F×). This claim in the ramified case

follows from the observation that L is integral and that L ⊆ HomOF
(X0,X0×Xσ

0 ) ⊆ ϖ−1L

(as the isogeny in (5.1.2) has kernel contained in the ϖ-torsion subgroup).

(4) Transitivity of the I1 action is immediate from part (1). Note also End(X) ∩ (U(W) ×
U(W⊥)) ⊆ K1,L ×K1,L⊥ so the displayed map is well-defined. In the nonsplit cases, the

assertions follow from parts (2) and (3). Bijectivity in the split case follows because we

then have End(X) ∩ (U(W)× U(W⊥)) = K1,L ×K1,L⊥ .

(5) Follows from the previous parts, i.e. Z̃(L)(k) corresponds to (γ, γ⊥) such that L ⊆ γ(L). □

Suppose F/Qp is split and L ⊆W is any subset (with arbitrary signature (n − r, r)). We take

Z(L) ⊆ Z̃(L) to be the open and closed subfunctor corresponding (via Lemma 5.4.1(4)) to the

locus where γ⊥(L⊥) = L⊥. By the previous discussion, there is a isomorphism of formal schemes

Z̃(L) Z(L)× U(V⊥)/K1,L⊥

(X, ιX, λX, (γ, γ
⊥)) ((X, ιX, λX, (γ, 1)), γ

⊥).

(5.4.4)

In this case, we have a canonical bijection

Z(L)(k) = {M ⊆W : full rank self-dual lattice with L ⊆M} (5.4.5)

via Lemma 5.4.1.

Lemma 5.4.2. Suppose F/Qp is split. If L ⊆ W is an OF -lattice of full rank (i.e rank n − r),
then Z(L)(k) is a finite set.

Proof. Our task is to show that the right-hand side of (5.4.5) is finite. For such M , we must have

L ⊆ M ⊆ M∨ ⊆ L∨ where L∨ and M∨ denote the dual lattices. If L ̸⊆ L∨ then Z(L) is empty.

Otherwise, L∨/L is an OF -module of finite length, so there are only finitely many possibilities for

M . □

5.5. Horizontal and vertical decomposition. For a locally Noetherian formal scheme X , viewed
as a ringed space with structure sheaf OX , we write

K ′
0(X ) := K0(Coh(OX )) FdK

′
0(X ) ⊆ K ′

0(X ) (5.5.1)

for the K0 group of coherent OX -modules and the subgroup generated by coherent sheaves sup-

ported in (formal scheme-theoretic) dimension ≤ d, respectively. If X is moreover formally locally

of finite type over Spf R for a complete discrete valuation ring R, we say that X is equidimensional

of dimension n if every open formal subscheme of X has dimension n. In this case, if Z → X is an

adic finite morphism of locally Noetherian formal schemes, we write

FmX K
′
0(Z) := Fn−mK

′
0(Z) grmXK

′
0(Z) := FmX K

′
0(Z)/Fm+1

X K ′
0(Z). (5.5.2)
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We often work with these groups tensor Q, written as K ′
0(X )Q, etc.

The discussion in Section 5.1 implies that the Rapoport–Zink space N (n−r, r) is equidimensional

of dimension (n−r)r+1. For the rest of Section 5.5 we fix signature (n−1, 1) and use the shorthand

N := N (n− 1, 1). The material below is a local analogue of Section 4.6.

Assume F/Qp is nonsplit for the moment. For any nonzero x ∈ W, the local special cycle

Z(x) is a Cartier divisor on N for any nonzero x ∈ W ([KR11, Proposition 3.5] (inert) [How19,

Proposition 4.3] (inert allowing p = 2), and also [LL22, Lemma 2.40] (ramified exotic smooth)).

For any x ∈W, set

LZ(x) :=

OZ(x) if x ̸= 0

(· · · 0→ E 0−→ ON → 0 · · · ) if x = 0
(5.5.3)

in Db
Coh(OZ(x))

(ON ) (bounded derived category of ON -modules with cohomology sheaves coherent

and supported along OZ(x)), where the ON term is in degree 0. For any tuple x ∈Wm, we then

consider the derived local special cycle

LZ(x) := LZ(x1)⊗L · · · ⊗L LZ(xm) ∈ Db
Coh(OZ(x))

(ON ) (5.5.4)

Its image LZ(x) ∈ K ′
0(Z(x))Q lies in FmNK

′
0(Z(x))Q by multiplicativity of the codimension filtra-

tion26 and depends only on spanOF
(x) (“linear invariance”) by [How19, Theorem B] (inert) and

[LL22, Proposition 2.33] (ramified exotic smooth).

Continuing to assume F/Qp is nonsplit, assume x ∈Wm spans a non-degenerate Hermitian OF -
lattice of rank m♭. We define certain derived vertical local special cycles LZ(x)V ∈ grmNK

′
0(Z(x)k)Q

as follows.

For integers e≫ 0, we have a scheme-theoretic union decomposition (Lemma 11.7.5)

Z(x) = Z(x)H ∪ Z(x)V (5.5.5)

where Z(x)H is the flat part of Z(x), i.e. the largest closed formal subscheme which is flat over

Spf OF̆ , and Z(x)V := Z(x)Spf OF̆ /p
e for e ≫ 0. Since Z(x)H is equidimensional of dimension

n−m♭ (Lemma 11.7.4), and since Z(x)H ∩Z(x)V has dimension ≤ n−m♭−1, there is an induced

decomposition

grm
♭

N K ′
0(Z(x)) = grm

♭

N K ′
0(Z(x)H )⊕ grm

♭

N K ′
0(Z(x)k) (5.5.6)

independent of e (cf. [Zha21, Lemma B.1]27). Here we have used the pushforward dévissage

isomorphism K ′
0(Z(x)k)

∼−→ K ′
0(Z(x)V ) for for K ′

0 groups.

If m = m♭, we define LZ(x)V to be given by the projection

grmNK
′
0(Z(x))Q grmNK

′
0(Z(x)k)Q

LZ(x) LZ(x)V .
(5.5.7)

26There is a technicality here, as N is a formal scheme rather than a scheme. So we instead prove filtration

multiplicativity via uniformization (Corollary 11.7.8) by reducing to the analogous filtration multiplicativity statement

for global special cycles. We will make a few other forward references to Section 11.7 where we verify some properties

of local special cycles via uniformization.
27Strictly speaking, our setup for K′

0 groups may be different from Zhang’s in non quasi-compact settings. The

proof of the cited lemma is the same in our setup.
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By the linear invariance property for LZ(x) discussed above, the class LZ(x)V depends only on

spanOF
(x).

For possibly m ̸= m♭, we say that x = [x1, . . . , xm] is in minimal form if x♭ := [xm−m♭+1, . . . , xm]

satisfies spanOF
(x♭) = spanOF

(x). In this case, set x# := [x1, . . . , xm−m♭ ] and define28

LZ(x)V := LZ(x#) · LZ(x♭)V ∈ grmNK
′
0(Z(x)k)Q. (5.5.8)

For x possibly not in minimal form, select any γ ∈ GLm(OF ) such that x · γ is in minimal form,

and set LZ(x)V := LZ(x · γ)V (note Z(x) = Z(x · γ)).
We claim that LZ(x)V depends only on m and spanOF

(x), and not on the choice of x or a

minimal form (“linear invariance”). For x in minimal form and with notation as above, we already

explained that LZ(x♭)V depends only on spanOF
(x). Recall Z(x) = Z(x♭). Consider any element

xi of the tuple x#. Then xi ∈ spanOF
(x♭) = spanOF

(x). In particular, Z(x♭) ⊆ Z(xi). But

Grothendieck–Messing theory provides a canonical isomorphism

E|Z(xi)
∼−→ I(xi)/I(xi)2 (5.5.9)

if xi ̸= 0, where I(xi) ⊆ ON is the ideal sheaf of the Cartier divisor Z(xi) ⊆ N (follows from

[How19, Definition 4.2] (inert) and [LL22, Lemma 2.39]). Hence we have

LZ(x#)|Z(x♭)
∼= LZ(0m−m♭)|Z(x♭) (5.5.10)

as elements of Db
Coh(OZ(x♭)), where 0m−m♭ ∈Wm−m♭

is the tuple with all entries equal to 0. Then

we have

LZ(x)V = LZ(0m−m♭) · LZ(x♭)V ∈ grmNK
′
0(Z(x)k)Q. (5.5.11)

We have explained that the right-hand side does not depend on any auxiliary choices.

Next, suppose F/Qp is split, and assume x ∈Wm has OF -span which is a lattice of rank n− 1

(full rank). We have grn−1
N K ′

0(Z(x)k) = 0 for dimension reasons (the reduced subscheme of N is

dimension 0, see Section 5.4 and Lemma 11.7.3). Constructing LZ(x)V ∈ grmNK
′
0(Z(x)k) as above

gives the derived vertical local special cycle LZ(x)V = 0.

Next, consider x ∈Wm which is a basis for its OF -span L♭ := spanOF
(x). If F/Qp is split, we

also assume m = n− 1. In this situation, we set LZ(L♭)V := LZ(x)V , since the latter depends only

on L♭. If n = 2 and m = 1, we have LZ(x)V = 0 since the reduced subscheme Nred has dimension

0 (Section 5.4) and since N has dimension 2 in this case.

5.6. Serre tensor and signature (1, 1). The case of signature (1, 1) plays an important role for

describing local special cycles via the Serre tensor construction.

28One needs to show that the map α 7→ LZ(x#) · α sends Fm♭+1
N K′

0(Z(x)k)Q → Fm+1
N K′

0(Z(x)k)Q. This is clear

if m♭ ≥ n− 1, but we do not know a proof of this in general as N is a formal scheme and not a scheme. Since we are

mostly interested in the case m♭ ≥ n−1, we do not pursue this point further. Even when m♭ = n−1 and m = n, one

still needs to check that LZ(x)V lies in Fn
N (Z(x)k)Q (rather than Fn−1

N (Z(x)k)Q). This follows e.g. because Z(x)k
is a Noetherian scheme (Lemma 11.7.3) whose reduced irreducible components are projective over k. The definition

of LZ(x)V should thus be treated as conditional unless m = m♭ or m♭ ≥ n− 1.
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As above, let X0 be the unique supersingular (resp. ordinary) p-divisible group over k of height

2 and dimension 1 if F/Qp is nonsplit (resp. split). For schemes S over Spf OF̆ , we consider pairs

(X, ρ) where X is a p-divisible group over S and ρ : XS → X0,S is any quasi-isogeny.

We form the Rapoport–Zink space Ñ2,1 over Spf OF̆ , given by

Ñ2,1(S) := {isomorphism classes of framed tuples (X, ρ) over S}. (5.6.1)

This is a locally Noetherian formal scheme which is formally locally of finite type over Spf OF̆ (via

the by-now standard representability result [RZ96, Theorem 2.16]). There is an isomorphism of

formal schemes Isog0(X0) → Ñ2,1 given by ρ 7→ (X0, ρ), where Isog0(X0) is viewed as a constant

formal scheme. Indeed, this follows as in the proof of Lemma 5.4.1 by uniqueness of X0 over any

algebraically closed field κ (any quasi-endomorphism of X0 descends to k as well, as may be checked

on isocrystals).

We let N2,1 ⊆ Ñ2,1 be the open and closed locus where the framing ρ is fiberwise an isomorphism.

Then N2,1 is representable by a formal scheme, and there is a (non-canonical) isomorphism N2,1
∼=

Spf OF̆ [[t]] (e.g. by Grothendieck–Messing theory).

For arbitrary signature (n − r, r) in the split case, we can form Ñn,r and Nn,r as above, where

we replace X0 with the unique ordinary p-divisible group of height n and dimension r. The

previous asssertions for Ñ2,1 and N2,1 hold in this case as well, except we now have Nn,r ∼=
Spf OF̆ [[t1, . . . , t(n−r)r]] (again by Grothendieck–Messing theory).

Lemma 5.6.1. Given any (X, ρ) ∈ N2,1(S), any principal polarization λX0 of X0 lifts uniquely to

a principal polarization on X.

Proof. Uniqueness follows from Drinfeld rigidity. Any two principal polarizations on X differ by

Z×
p scalar (since this holds for X0), so it is enough to show existence of a principal polarization

on X. Since N2,1
∼= Spf OF̆ [[t]], it is enough to check the case where the scheme S is a finite order

thickening of Spec k. By Serre–Tate, we can view X as the p-divisible group of an elliptic curve over

S (deforming an elliptic curve over Spec k with p-divisible group X0). Any elliptic curve admits a

(unique) principal polarization. □

The preceding (possibly standard) argument also appeared in the proof of [RSZ17, Proposition

6.3] (for the same purpose), there in the supersingular case.

Recall the triple (X0⊗Zp OF , ι, λX0 ⊗λtr) described in Section 5.1, arising from the Serre tensor

construction (fixing some choice of λX0). For any (X, ρ) ∈ N2,1(S), the same construction gives a

tuple (X ⊗Zp OF , ι, λX0 ⊗λtr, ρ⊗Zp OF ) where λX0 denotes the unique lift to X as in Lemma 5.6.1

(by abuse of notation), and where ρ⊗Zp OF : XS ⊗Zp OF → X0,S ⊗Zp OF .

Lemma 5.6.2 (Serre tensor isomorphism). For any F -linear quasi-isogeny ϕ : X0 ⊗Zp OF → X

preserving polarizations exactly, the induced map

N2,1 N (1, 1)

(X, ρ) (X ⊗Zp OF , ι,−d2 · (λX0 ⊗ λtr), ϕS ◦ (ρ⊗Zp OF ))
(5.6.2)
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(defined on S-points for schemes S over Spf OF̆ ) is an open and closed immersion whose set-

theoretic image is a single point.

If F/Qp is split, the inverse is given by restricting (X, ι, λ, ρ) 7→ (X−, (ϕ−
S
)−1 ◦ ρ−) to the appro-

priate component of N (1, 1).

Proof. For the ramified case, we refer to [RSZ17, Proposition 6.3]. In the unramified case, the

lemma follows by identifying the deformation theory of N2,1 and N (1, 1) using Grothendieck–

Messing theory, using the eigenspace decomposition for the OF -action on the Dieudonné crystals

of objects in N (1, 1)(S) as in (3.5.4) and surrounding discussion (so the deformation problem for

N2,1 identifies with the deformation problem of the “− eigenspace” of the Hodge filtration for

objects in N (1, 1)(S) in the notation of loc. cit..). This is essentially how we verified generic formal

smoothness of special cycles in loc. cit.. □

When F/Qp is split and the signature (n−r, r) is arbitrary, recall that any (X, ι, λ, ρ) ∈ N (n−r, r)
admits a decomposition X = X+×X− and ρ = ρ+×ρ− where ρ± : X± → X± using the nontrivial

idempotents e± ∈ OF .

Lemma 5.6.3. Suppose F/Qp is split, and consider arbitrary signature (n− r, r). For any formal

scheme S over Spf OF̆ , the forgetful functor
groupoid of principally polarized

Hermitian p-divisible groups (X, ι, λ)

over S of signature (n− r, r)


{

groupoid of ordinary p-divisible groups

over S of height n and dimension r

}

(X, ι, λ) X−

(5.6.3)

is an equivalence of categories. The same holds if we consider the groupoids with morphisms being

quasi-isogenies (rather than isomorphisms).

Proof. An explicit quasi-inverse is given by (X−) 7→ (X, ι, λ) (over a scheme S) with

X = (X−)∨ ×X− (5.6.4)

ι(e+) : X → (X−)∨ ι(e−) : X → (X+)∨ projections

λ =

(
0 1

−1 0

)
: (X−)∨ ×X− → X− × (X−)∨.

This is analogous to the following phenomenon: if L is a free OF -module of rank n equipped with

a perfect Hermitian pairing, then U(L) ∼= GLn(L
−) (and similarly with F instead of OF ). □

Remark 5.6.4. Suppose F/Qp is split, and suppose R is a complete Noetherian local ring with

algebraically closed residue field κ. If n ≥ 2 and if Qp/Zpn−2×X− is an ordinary p-divisible group

of height n and dimension r, then (X0)
n−2×(X−⊗ZpOF ) (with the product OF -action and product

polarization (λX0)
n−2×(λX0⊗λtr), for some choice of isomorphism X−

κ
∼= X0) is a pre-image under

the equivalence in (5.6.3). Here (X0, ιX0 , λX0) is the canonical lift (over S) as in Definition 5.1.7

(forgetting the framing).
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Remark 5.6.5. If we drop the ordinary hypothesis on both sides of Lemma 5.6.3, the lemma still

holds (by the same proof).

Lemma 5.6.6. Suppose F/Qp is split, and form Ñn,r using the framing object X−. For arbitrary

signature (n− r, r), the forgetful map

N (n− r, r) Ñn,r

(X, ι, λ, ρ) (X−, ρ−)

(5.6.5)

is an isomorphism.

Proof. This is immediate from Lemma 5.6.3. Alternative (less elementary) proof: first observe that

the forgetful map is an isomorphism on κ-points for any algebraically closed field κ over k (see

Lemma 5.4.1 and above discussion). As in the proof of Lemma 5.6.2, the claim now follows from

Grothendieck–Messing theory. □

Remark 5.6.7. In the situation of Lemma 5.6.6, the open and closed subfunctor Nn,r ⊆ Ñn,r ∼=
N (n − r, r) has Nn,r(k) being a singleton set, corresponding (via Lemma 5.4.1) to the lattice

L⊕ L⊥ ⊆W ⊕W⊥ (i.e. the locus where the framing ρ is a fiberwise isomorphism).

For F/Qp in all cases (inert, ramified, split) and for any x ∈W, the local special cycle Z(x)→
N (1, 1) pulls back along the Serre tensor isomorphism (Lemma 5.6.2) to a certain local special

cycle on N2,1 associated with an element x′ ∈ Hom0(X0,X0) (arising from adjunction in the Serre

tensor construction). The ramified case is explained in [RSZ17, §6.2]. The inert and split cases

may be formulated in a similar way (we omit a more detailed statement, which we will not need).

This may be viewed as a local version of [KR14, Proposition 14.5] (see also Section 22.2).

For F/Qp nonsplit (at least if p ̸= 2), Kudla–Rapoport [KR11, Proposition 8.1] and Rapoport–

Smithling–Zhang [RSZ17, Proposition 7.1] use this to describe Z(x) in terms of certain quasi-

canonical lifting cycles on N2,1, corresponding to closed immersions Spf OĔs
→ N2,1 associated

with (Xs, ρ) ∈ Spf OĔs
where (Xs, ρ) arises from a quasi-canonical lifting of (X0, j) for suitable

j : OF → End(X0) (in the notation and sense of Section 7.2 below). This was extended by Li–

Zhang [LZ22a] (inert) and Li–Liu [LL22] (ramified) to flat parts of 1-cycles in signature (n− 1, 1),

for arbitrary n in the inert case and even n in the ramified case. We will need this result, which

we recall in Section 7.3 below (to the precision we need).

We will need an analogue of the previous paragraph when F/Qp is split (allowing p = 2). This

is accomplished in Section 6 below (statement given in Section 7.3). Our method in the split case

is somewhere different from the proofs cited above.

6. More on moduli of p-divisible groups: split

Retain notation from Section 5. Throughout Section 6, we assume F/Qp is split.

6.1. Lifting theory for ordinary p-divisible groups. We discuss lifting theory for ordinary

p-divisible groups over an algebraically closed field κ of characteristic p. The case of height 2

dimension 1 ordinary p-divisible groups is discussed in [Mes72, Appendix]. We spell out the case
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of general height and dimension (which reduces to the results in [Mes72, Appendix]). See also the

exposition in [Meu07] (or the sketch in [Gro86, §6], though we will need some additional material

on homomorphisms between liftings.

Take integers r1, r2 ≥ 0. The unique ordinary p-divisible group X over κ of height r1 + r2 and

dimension r1 is X = µµµr1p∞ ×Qp/Zpr2 .
Next, let R be an adic Noetherian local ring (with maximal ideal being an ideal of defini-

tion) with residue field κ. The p-divisible groups µµµp∞ and Qp/Zp lift uniquely to Spf R (e.g. by

Grothendieck–Messing deformation theory), which we still notate as µµµp∞ and Qp/Zp. If X is a

lift of X over Spf R, its connected-étale exact sequence must be 0 → µµµr1p∞ → X → Qp/Zpr2 → 0.

Classifying lifts X is thus the same as classifying such extensions, which are in canonical bijection

with Ext1Spf R(Qp/Zpr2 ,µµµr1p∞) (using also Drinfeld rigidity, as well as the fact Hom(µµµp∞ ,Qp/Zp) =
Hom(Qp/Zp,µµµp∞) = 0). Here, Ext1Spf R is calculated in the abelian category of fppf sheaves of

abelian groups over Spf R (this is also [Mes72, Appendix, Corollary (2.3)]). We typically suppress

the R-dependence in Hom(−,−).
Applying Hom(−,µµµp∞) to the short exact sequence of sheaves (fppf sheaves over Spf R)

0 Z Z[1/p] Qp/Zp 0 (6.1.1)

gives a boundary morphism δ : Hom(Z,µµµp∞)→ Ext1Spf R(Qp/Zp,µµµp∞) in the associated long exact

sequence. This map δ is an isomorphism [Mes72, Appendix, Proposition (2.5)].29 By compatibil-

ity of Ext with finite direct sums, it follows that the boundary morphism δ : Hom(Zr2 ,µµµr1p∞) →
Ext1Spf R(Qp/Zpr2 ,µµµr1p∞) is also an isomorphism.

Given an element α ∈ Hom(Zr2 ,µµµr1p∞), we can identify the extension corresponding to δ(α) with

the bottom row of the diagram

0 Zr2 Z[1/p]r2 Qp/Zpr2 0

0 µµµr1p∞ X Qp/Zpr2 0

α

⌜
(6.1.2)

where the rows are exact and the left square is a pushout. This follows from general homological

algebra valid in any abelian category (e.g. [SProject, Section 010I] and [SProject, Section 06XP]).

Given r1, r
′
1, r2, r

′
2 ∈ Z≥0, we have

Hom(µµµr1p∞ ×Qp/Zpr2 ,µµµ
r′1
p∞ ×Qp/Zpr

′
2) = Hom(µµµr1p∞ ,µµµ

r′1
p∞)×Hom(Qp/Zpr2 ,Qp/Zpr

′
2)

∼=Mr′1,r1
(Zp)×Mr′2,r2

(Zp), (6.1.3)

since any p-divisible group over κ of height 1 has endomorphism ring Zp. Here Ms,t(Zp) denotes

s× t matrices with entries in Zp. Given

α ∈ Hom(Zr2 ,µµµr1p∞) = HomZp(Zpr2 ,µµµ
r1
p∞) α′ ∈ Hom(Zr

′
2 ,µµµ

r′1
p∞) = HomZp(Zpr

′
2 ,µµµ

r′1
p∞) (6.1.4)

29In loc. cit. this is stated for Artinian local rings R, but one can pass to the limit and obtain the statement here

(compare [Mes72, Appendix, Remark (2.2)]).

77

https://stacks.math.columbia.edu/tag/010I
https://stacks.math.columbia.edu/tag/06XP


with corresponding lifts X and X′ (of µµµr1p∞ ×Qp/Zpr2 and µµµ
r′1
p∞ ×Qp/Zpr

′
2 respectively) over Spf R,

a morphism (f1, f2) ∈Mr′1,r1
(Zp)×Mr′2,r2

(Zp) lifts to a map f : X→ X′ if and only if

f1 ◦ α = α′ ◦ f2, (6.1.5)

again by general facts about Ext in abelian categories (compare with the proof of [Mes72, Appendix,

Proposition (3.3)], which discusses the case r1 = r2 = r′1 = r′2 = 1). We will repeatedly use this

criterion for lifting to maps f : X→ X′. In (6.1.4), the subscripts Zp indicate Zp-linearity (not the

base Spf Zp).

6.2. Quasi-canonical lifting cycles: split. Throughout Section 6.2, we write R for an adic

Noetherian local ring (with maximal ideal being an ideal of definition) equipped with a morphism

Spf R→ Spf OF̆ inducing an isomorphism on residue fields.

Allowing arbitrary signature (n−r, r) for the moment, form the Rapoport–Zink spacesN (n−r, r),
Nn,r, and Ñn,r as in Section 5.6. With (X, ιX, λX) denoting the framing object for N (n − r, r),
we take X− to be the framing object used to define Nn,r and Ñn,r. There are non-canonical

isomorphisms X− ∼= µµµrp∞ ×Qp/Zpn−r and X−
0
∼= Qp/Zp.

Definition 6.2.1. Given a subset L− ⊆ W− = Hom0(X−
0 ,X

−), consider the associated local

special cycle

Y(L−) ⊆ Nn,r (6.2.1)

which is the subfunctor consisting of pairs (X, ρ) over schemes S over Spf OF̆ such that, for all

x− ∈ L−, the quasi-homomorphism

ρ−1 ◦ x′
S
◦ ρ−

X0,S
: X−

0 → XS (6.2.2)

lifts to a homomorphism X−
0 → X.

As in Definition 5.1.7 (also Section 7.1), the notation X0 refers to the canonical lifting of X0

(and X0 = X+
0 ×X−

0 is the decomposition via the nontrivial idempotents e± ∈ OF , with X+
0
∼= µµµp∞

and X−
0
∼= Qp/Zp). Again, Y(L−) ⊆ Nn,r is a closed subfunctor (hence a locally Noetherian formal

scheme) by [RZ96, Proposition 2.9] for quasi-homomorphisms.

Lemma 6.2.2. Suppose L ⊆W = Hom0
F (X0,X) is a subset with L+ ⊆ L+ = Hom(X+

0 ,X
+). The

natural commutative diagram

Y(L−) Z(L)

Nn,r Ñn,r N (n− r, r)

⌟

∼

(6.2.3)

is Cartesian.

Proof. The lower horizontal arrows are as described in Section 5.6 and Lemma 5.6.6 (the composite

is an open and closed immersion). The lemma amounts to the claim that, for any (X, ι, λ, ρ) ∈ X(S)

(for some scheme S over Spf OF̆ ), if x = x+ × x− ∈ Hom0
F (X0,X) with x+ ∈ HomOF

(X+
0 ,X

+),

then x lifts to a homomorphism X0 → X if and only if x− lifts to a homomorphism X−
0 → X−.

Stated alternatively, this is the claim that x+ always lifts to a homomorphism X+
0 → X+. Since
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Nn,r ∼= Spf OF̆ [[t1, . . . , t(n−r)r]], this is clear because X+
0 → X+ automatically factors through a

homomorphism to the connected part (X+)0 ∼= µµµn−rp∞ of X+, over any base Spf R where R is

Noetherian Henselian local ring (alternative proof: apply (6.1.5)). □

Choose isomorphisms (X−)0 ∼= µµµrp∞ and (X−)ét ∼= Qp/Zpn−r for the connected and étale parts

of X− respectively. Any element (X, ρ) ∈ Nn,r(Spf R) (i.e. a morphism Spf R → Nn,r) then

corresponds to a class α ∈ Ext1Spf R(Qp/Zpn−r,µµµrp∞) = HomZp(Zpn−r,µµµrp∞) via the lifting theory in

Section 6.1.

Lemma 6.2.3. Fix any isomorphism X−
0
∼= Qp/Zp. Consider φ : Spf R→ Nn,r, corresponding to

(X, ρ) ∈ Nn,r(Spf R) and hence a class α′ ∈ Ext1Spf R(Qp/Zpn−r,µµµrp∞). Given any subset L− ⊆ L−,

the morphism φ factors through Y(L−) ⊆ Nn,r if and only if the map

x∗ : Ext1Spf R(Qp/Zpn−r,µµµrp∞)→ Ext1Spf R(Qp/Zp,µµµrp∞) (6.2.4)

satisfies x∗(α′) = 0 for all x ∈ L−.

Proof. In the lemma statement, we have viewed x ∈ L− as a morphism Qp/Zp → Qp/Zpn−r via

the various identifications. The lemma follows from the lifting criterion in (6.1.5) (in the notation

of loc. cit., take α = 0). □

Next, we restrict to the case of signature (n− 1, 1).

Lemma 6.2.4. Assume that R is moreover a domain and that Spf R→ Spf OF̆ is flat. There is a

natural map

{
cyclic subgroups of order ps

in Ext1Spf R(Qp/Zpn−1,µµµp∞)

} 
Full rank integral lattices M ⊆ L

such that t(M) ≤ 1 and val(M) = s

and M+ = L+

 (6.2.5)

(functorial in R on the left). If R contains a primitive ps-th root of unity, then the map is a

bijection. Otherwise, the left-hand side is empty.

Proof. Recall the identification HomZp(Zpn−1,µµµp∞) ∼= Ext1Spf R(Qp/Zpn−1,µµµp∞) from Section 6.1.

Suppose α′ ∈ HomZp(Zpn−1,µµµp∞) generates a cyclic subgroup of order ps (possible if and only

if R contains a primitive ps-th root of unity). Let Mn−1,n−1(Zp) act on HomZp(Zpn−1,µµµp∞) by

pre-composition. The annihilator of α′ is generated (as a one-sided ideal) by an element f2 ∈
Mn−1,n−1(Zp) which has Smith normal form diag(1, . . . , 1, ps).

We have a canonical identification L− ∼= Hom(X−
0 , (X

−)ét). Via the identification (X−)ét ∼=
Qp/Zpn−1, we obtain an action of Mn−1,n−1(Zp) on L− (post-composition). We then set M− =

f2(L
−), and let M = L+ ⊕M−. Note that M− does not depend on the choice of generator f2.

Conversely, given a lattice M ⊆ L as in the lemma statement, select any f2 ∈ Mn−1,n−1(Zp)
satisfying M− = f2(L

−), and note that f2 necessarily has Smith normal form diag(1, . . . , 1, ps). If

R contains a primitive ps-th root of unity, then f2 acting on HomZp(Zpn−1,µµµp∞) has kernel which

is cyclic of order ps. This gives the inverse map. □
79



For s ∈ Z≥0, set Ĕs := F̆ [ζps ] with ring of integers OĔs
= OF̆ [ζps ], where ζps is a primitive

ps-th root of unity. Suppose M ⊆ L is an integral full rank OF -lattice satisfying M+ = L+,

with type t(M) ≤ 1 and val(M) = s. By Lemma 6.2.4, there is an associated cyclic subgroup of

Ext1Spf OĔs
(Qp/Zpn−1,µµµp∞). Any generator of this cyclic subgroup defines a morphism Spf OĔs

→
Nn,1 (via the lifting theory from Section 6.1). Changing the choice of generator corresponds precisely

to the action of Gal(Ĕs/F̆ ) (by Lubin–Tate theory for µµµp∞). This morphism Spf OĔs
→ Nn,1 must

be a closed immersion: if the morphism factors through Spf R → Nn,1 for some sub OF̆ -algebra
R ⊆ OĔs

, then Lemma 6.2.4 implies that R = OĔs
.

We write Spf OĔs

∼= Z(M)◦ ⊆ Nn,1 for the resulting closed subfunctor, and call it a quasi-

canonical lifting cycle. This closed subfunctor Z(M)◦ does not depend on the choices of isomor-

phisms (X−)0 ∼= µµµp∞ and (X−)ét ∼= Qp/Zpn−1 appearing in the statement of Lemma 6.2.4.

Lemma 6.2.5. With M as above, view Z(M)◦ as a morphism Spf OĔs
→ Nn,1 corresponding to

(X, ρ) ∈ Nn,1(Spf OĔs
).

If n = 1 then X ∼= µµµp∞. If n ≥ 2 then X ∼= Qp/Zpn−2×Xs (forgetting ρ) where Xs is a p-divisible

group of height 2 and dimension 1 with End(Xs) = Zp+psOF (a quasi-canonical lifting in the sense

of Section 7.2).

Proof. Let α′ ∈ HomZp(Zpn−1,µµµp∞) be the element corresponding to (X, ρ). If n = 1 then α′ = 0

and X ∼= µµµp∞ .

If n ≥ 2, then (after replacing ρ by ϕ◦ρ for some ϕ ∈ GLn−1(Zp)), the lift (X, ρ) ofQp/Zpn−1×µµµp∞
is associated with α′ of the form (0, . . . , 0, ζps) for ζps ∈ OĔs

a primitive ps-th root of unity. For

some Xs as in the lemma statement, we obtain a commutative diagram

0 Zn−1 Z[1/p]n−1 Qp/Zpn−1 0

0 µµµp∞ Qp/Zpn−2 × Xs Qp/Zpn−1 0 ,

(0,...,0,ζps )
(6.2.6)

using the lifting criterion of (6.1.5) again. □

Lemma 6.2.6. Suppose M ⊆ L is an integral full rank OF -lattice satisfying M+ = L+ with type

t(M) ≤ 1 and val(M) = s. Let L− ⊆W− be any subset. We have Z(M)◦ ⊆ Y(L−) if and only if

L− ⊆M .

Proof. If n = 1 then W− = 0 and Z(M)◦ = Y(L−) = Nn,1, so the lemma is trivial in this case.

We thus assume n ≥ 2 below.

It is enough to check the case where L− consists of a single element, i.e. a quasi-homomorphism

x : (X0)
− → X− (or equivalently, x : (X0)

− → (X−)ét since X−
0
∼= Qp/Zp is étale). If x ̸∈ L− then

Y(L−) = ∅ (while Z(M)◦ ̸= ∅), so we may assume x ∈ L−.

Pick any identification X−
0
∼= Qp/Zp. Set s = val(M). Use the setup and notation in the proof

of Lemma 6.2.4.

View Z(M)◦ as a closed immersion Spf OĔs
→ Nn,1, corresponding to an element α′ ∈ HomZp(Zpn−1,µµµp∞).

By Lemma 6.2.3, our task is to show that α′ ◦ x = 0 if and only if α′ ∈ M−. Since f2 gen-

erates (in Mn−1,n−1(Zp)) the annihilator of α′ (as a one-sided ideal), we see that α′ ◦ x = 0
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if and only if x ∈ f2(L
−) = M− (for example, view x as a column vector and observe that

(x, 0, . . . , 0) ∈Mn−1,n−1(Zp) lies in the one-sided ideal generated by f2). □

Definition 6.2.7. LetM ⊆W be a full rank integralOF -lattice, with type t(M) ≤ 1 and val(M) =

s. Select any γ ∈ U(W) satisfying γ(L+) = M+ (also write γ for (γ, 1) ∈ U(W) × U(W⊥), by

abuse of notation).

The quasi-canonical lifting cycle associated with M is the closed subfunctor

Spf OĔs

∼= Z(M)◦ := γ(Z(γ−1(M))◦) ⊆ N (n− 1, 1) (6.2.7)

where γ ∈ U(W)× U(W⊥) acts on N (n− 1, 1) as in Section 5.3.

In the situation of Definition 6.2.7, the closed subfunctor Z(M)◦ does not depend on the choice

of γ. We have also viewed Nn,1 as an open and closed subfunctor of N (n − 1, 1) (as in the lower

horizontal arrows in Lemma 6.2.2).

Lemma 6.2.8. If L ⊆W is any subset and M ⊆W is any full rank integral lattice with t(M) ≤ 1,

we have Z(M)◦ ⊆ Z(L) if and only if L ⊆M .

Proof. After acting by U(W), it is enough to check the case where M+ = L+. In this case, we

have Z(M)◦ ⊆ Nn,1. If L ̸⊆ L, then Z(L)∩Z(M)◦ = ∅ by Lemma 5.4.1(5) and Remark 5.6.7 (and

Z(M)◦ is nonempty). So assume L ⊆ L. Then Z(L) = Y(L−) (Lemma 6.2.2). This reduces to the

case proved in Lemma 6.2.6. □

Corollary 6.2.9. Let L ⊆ W be any subset. Form the horizontal (flat) part of the local special

cycle Z(L), which we denote as Z(L)H . We have an inclusion of closed formal subschemes⋃
L⊆M⊆M∗

t(M)≤1

Z(M)◦ ⊆ Z(L)H (6.2.8)

in N (n− 1, 1).

Proof. The union is a scheme-theoretic union (i.e. intersect associated ideal sheaves). The claim

follows from Lemma 6.2.8 because each Z(M)◦ is flat over Spf OF̆ . □

Lemma 6.2.10. Let M ⊆ W and M ′ ⊆ W be integral full-rank OF -lattices with t(M) ≤ 1 and

t(M ′) ≤ 1. If M ̸=M ′, then Z(M)◦ ̸= Z(M ′)◦.

Proof. Let N ⊆W (resp. N ′ ⊆W) be the unique self-dual full rank lattice such that N+ = M+

(resp. N ′+ = M ′+). On reduced subschemes, we have Z(M)◦red = Z(M ′)◦red if and only if N = N ′

by Lemma 5.4.1 (more precisely, Remark 5.6.7, Definition 6.2.1, and the action on special cycles in

(5.3.6)). So we may assume N = N ′. Using the U(W) action on N (n− 1, 1), we also reduce to the

case where N = L.

Set s = val(M) and s′ = val(M ′), and view Z(M)◦ and Z(M ′)◦ as closed immersions φ : Spf OĔs
→

N (n − 1, 1) and φ′ : Spf OĔs′
→ N (n − 1, 1). Lemma 6.2.4 implies that M = M ′ if and only if

both s = s′ and the morphisms φ,φ′ are the same up to Gal(Ĕs/F̆ )-action (this is equivalent to

requiring that the corresponding elements of Ext1 in that lemma generate the same subgroup).

This is satisfied if and only if Z(M)◦ = Z(M ′)◦. □
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Lemma 6.2.11. Let L ⊆W be a full rank OF -lattice. Assume that R is moreover a domain and

Spf R → Spf OF̆ is flat. Any morphism φ : Spf R → Z(L) factors through some quasi-canonical

lifting cycle Z(M)◦.

Proof. Again, we may act by U(W) on N (n − 1, 1) to assume that φ : Spf R → Z(L) factors

through the open and closed component Nn,1 ⊆ N (n − 1, 1) described in Section 5.6 and above.

This implies L ⊆ L (as Z(L) ∩Nn,1 is otherwise empty, see Lemma 5.4.1).

Fix isomorphisms as in the statement of Lemma 6.2.4. Then φ corresponds to some (X, ρ) ∈ Nn,1,
and this lift of X− corresponds to a class α′ ∈ Ext1(Qp/Zpn−1,µµµp∞) via the lifting theory in Section

6.1.

By Lemma 6.2.4, it is enough to show that α′ is ps-torsion for some s ∈ Z≥0 (then φ must factor

through Z(M)◦ where M is the lattice associated with the cyclic subgroup generated by α). Select

s ≥ 0 such that psL ⊆ L (such s exists because L is full rank). Then Lemma 6.2.3 implies psa′ = 0,

since φ factors through Z(L) (and hence through Y(L−)). □

7. Canonical and quasi-canonical liftings

We retain F/Qp and accompanying notation as in Section 5. In Sections 7.1 and 7.2, we allow

p = 2 even if F/Qp is ramified. We collect some needed facts about canonical and quasi-canonical

lifts in all cases (inert, ramified, split). See also [Gro86], [Wew07], [Meu07]. Our conventions differ

slightly from [Wew07], due to the phenomenon explained in [KR11, Footnote 7] (there in the inert

case, which we also modify to apply in the ramified case).

7.1. Canonical liftings. As in Section 5.1, let X0 be the unique supersingular (resp. ordinary)

p-divisible group of height 2 dimension 1 over k if F/Qp is nonsplit (resp. split). Let j : OF ↪→
End(X0) be a ring homomorphism. We reserve the notation ιX0 to mean a signature (1, 0) action,

and allow j to have either signature (i.e. (1, 0) or (0, 1)) for its action on LieX0.

Let Ĕ be any finite degree field extension of F̆ , with ring of integers OĔ . The pair (X0, j) admits

a lift (X0, ιX0 , ρX0) over Spf OĔ (i.e. (X0, ιX0) is a p-divisible group over Spf OĔ with OF -action
ιX0 , and ρX0 : X0,k → X0 is a OF -linear isomorphism with respect to ι and j).

In the supersingular case, the pair (X0, ιX0) may be described via Lubin–Tate formal groups. In

the ordinary case, we have X0
∼= µµµp∞ ×Qp/Zp.

By the signature of (X0, ιX0 , ρX0) (or (X0, ιX0)), we mean the signature of ιX0 acting on LieX0

(either (1, 0) or (0, 1)). If F/Qp is unramified (resp. ramified), then (X0, ιX0 , ρX0) must have the

same signature as (X0, j) (resp. can have either signature).

After fixing a signature, the triple (X0, ιX0 , ρX0) is unique up to unique isomorphism, and we call

it the canonical lifting30 of (X0, j). The canonical lifting over Spf OĔ is defined over Spf OF̆ (i.e.

is the base change of the canonical lift over Spf OF̆ ).

30When j has signature (1, 0), what Gross [Gro86] calls a canonical lifting is what we call a canonical lifting of

signature (1, 0). This change in terminology allows additional flexibility when discussing quasi-canonical liftings, to

account for e.g. [KR11, Footnote 7].
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The map ιX0 : OF → End(X0) is an isomorphism, since End(X0) is commutative and OF is

self-centralizing in End(X0) (in the nonsplit case, note End(X0) ↪→ End(LieX0) = OĔ so End(X0)

must be commutative).

If (Xσ0 , ι
σ
X0
) is as in (5.1.1), we have HomOF

(X0,X
σ
0 ) = 0 because End(X0) = OF .

Example 7.1.1. Assume F/Qp is nonsplit, and let X0 be the canonical lifting over Spf OĔ (of some

fixed signature). Drinfeld rigidity for quasi-homomorphisms implies End0(X0) ∼= End0(X0) ∼= D,

where D is the quaternion division algebra over Qp. On the other hand, if X′
0 denotes the p-divisible

group over SpecOĔ associated with X0 via Lemma B.3.1, we have End0(X′
0)
∼= End(X′

0)⊗ZpQp
∼= F .

Thus, by our conventions (explained in Appendix B.1), quasi-homomorphisms do not necessarily

lift along the equivalence of p-divisible groups over SpecOĔ and Spf OĔ from Lemma B.3.1. See

also Remark B.3.5.

7.2. Quasi-canonical liftings. Let Ĕ and (X0, j) be as in Section 7.1. For integers s ≥ 0, let

OF,s := Zp+psOF be the order of index ps in OF . When F/Qp is nonsplit (resp. split) the subgroup

O×
F,s ⊆ O

×
F (resp. (1 + psZp)× ⊆ Z×

p ) has an associated finite totally ramified abelian extension Ĕs

of F̆ by local class field theory. The index is

[Ĕs : F̆ ] =

ps(1− η(p)p−1) s ≥ 1

1 if s = 0.
(7.2.1)

where η(p) := −1, 0, 1 in the inert, ramified, and split cases respectively. In the split case, we have

OĔs
= OF̆ [ζps ] where ζps is a primitive ps-th root of unity.

In all cases, a quasi-canonical lifting of level s of (X0, j) is a triple (Xs, ιXs , ρXs) where

Xs is a p-divisible group over Spf OĔ
ιXs : OF,s

∼−→ End(Xs) is a ring isomorphism

ρX,s : Xs,k → X0 is a OF,s-linear isomorphism of p-divisible groups over k.

Note that a quasi-canonical lifting of level s = 0 is the same as a canonical lifting. As above, we

speak of the signature of a quasi-canonical lifting, which means the signature of the action ιXs |LieXs .

The signature of (X0, j) and the signature of a level s quasi-canonical lifting must be
same if F/Qp is inert and s is even, or F/Qp is split

opposite if F/Qp is inert and s is odd

either signature if F/Qp is ramified.

(7.2.2)

Quasi-canonical liftings of level s ≥ 0 exist in all such situations, and are defined over Spf OĔs
. The

property of being a level s quasi-canonical lifting is preserved under base change along Spf OĔ′ →
Spf OĔ for any finite degree field extension Ĕ′ over Ĕ. If F/Qp is split, a choice of level s quasi-

canonical lifting corresponds to a choice of morphism Zp → µµµp∞ over Spf OĔ of exact order ps (i.e.

a choice of primitive ps-th root of unity in Ĕs) via the lifting theory in Section 6.1.

The group Gal(Ĕs/F̆ ) acts simply transitively on the set of level s quasi-canonical liftings for

any fixed signature (if such liftings exist). By Lubin–Tate theory, this action is compatible with the

identification Gal(Ĕs/F̆ ) ∼= O×
F /O

×
F,s via local class field theory (normalized to send uniformizers
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to geometric Frobenius) where a ∈ O×
F acts on the set of quasi-canonical liftings as (Xs, ιXs , ρXs) 7→

(Xs, ιXs , aρXs). In the split case, we have used the isomorphism

O×
F /O

×
F,s Z×

p /(1 + psZp)×

x e+(x)e−(x−1)

(7.2.3)

if (X0, j) has signature (1, 0) and its reciprocal if (X0, j) has signature (0, 1). In particular, the

quasi-canonical liftings of a fixed level s are all isomorphic if the framing ρXs is forgotten.

Let (X0, ιX0 , ρX0) and (Xs, ιXs , ρXs) be canonical and quasi-canonical lifts over Spf OĔ , for some

(X0, j) and (X0, j
′) respectively (possibly j ̸= j′). Then

Hom(X0,Xs) ∼= ψs · OF (7.2.4)

(no OF -linearity imposed) is a free OF -module of rank 1 (where OF acts by pre-composition),

generated by some isogeny ψs of degree ps. The isogeny ψs is defined over Spf OĔs
. If X0 and Xs

have the same signature, then ψs is automatically OF,s-linear. When F/Qp is split, we may take

ψs to be the map inducing the map X0 → X0 which is

ψs|X0
0
: X0

0
id−→ X0

0 ψs|Xét
0
: Xét

0
×ps−−→ Xét

0 . (7.2.5)

on the connected and étale parts, respectively. This follows from the lifting criterion in (6.1.5).

For any generator ψs of Hom(X0,Xs), we have

lengthOĔ
(e∗Ω1

kerψs/ SpecOĔ
) =

1

2
[Ĕ : Q̆p]

(1− p−s)(1− ηp(p))
(1− p−1)(p− ηp(p))

(7.2.6)

where η(p) := −1, 0, 1 in the inert, ramified, split cases respectively and where e : SpecOĔ → kerψs

denotes the identity section.31 We are passing between Spf OĔ and SpecOĔ as in Appendix B.3.

The nonsplit case of (7.2.6) is essentially a computation of Nakkajima and Taguchi [NT91] (see

also [KRY04, Proposition 10.3] and its proof). The split case follows from (7.2.5), which implies

that kerψs is étale over Spec k (cf. the closely related [KRY04, Proposition 10.1]).

The following constant δtau(s) ∈ Q (“local change of tautological height”) will be crucial for the

formulation of our local main theorems. With notation as above, we define

δtau(s) := −
1

2
vp(degψs) +

1

[Ĕ : Q̆p]
lengthOĔ

(e∗Ω1
kerψs/SpecOĔ

) (7.2.7)

= −1

2

(
s− (1− p−s)(1− ηp(p))

(1− p−1)(p− ηp(p))

)
(7.2.8)

for integers s ∈ Z, with ηp(p) := −1, 0, 1 in the inert, ramified, split cases respectively. We used

(7.2.6) for the second equality.

The quantity δtau(s) depends only on s and ηp(p), and does not depend on the choice of ψs. We

also set δFal(s) := −2δtau(s). In Part 3 below, we will explain the relation of δtau(s) and δFal(s)

with local decompositions of “tautological” and Faltings heights of special cycles.

31In Part 5, the notation η : Q×
p → {±1} will mean the quadratic character associated with F/Qp. Hence the

assignment ηp(p) := 0 when F/Qp is ramified is an abuse of notation.
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7.3. Quasi-canonical lifting cycles. We state how certain local special cycles decompose into

quasi-canonical lifting cycles (Section 6.2). We continue to use the notation in Section 5.2, now

restricting to signature (n−1, 1). We also assume p ̸= 2 unless F/Qp is split (in the inert case, this

is so that we may cite [LZ22a, Theorem 4.2.1]).

Suppose M ♭ ⊆ W is an integral OF -lattice of rank n − 1 with t(M ♭) ≤ 1. Set s = ⌊val(M ♭)⌋
(notation as in Section 2.2). There is an associated quasi-canonical lifting cycle Z(M ♭)◦ ⊆ N (n−
1, 1), which is a certain closed subfunctor such that

Z(M ♭)◦ ∼=

Spf OĔs
if F/Qp is unramified

Spf OĔs
⊔ Spf OĔs

if F/Qp is ramified.
(7.3.1)

Suppose φ : Spf OĔs
→ N (n − 1, 1) is a morphism representing any component of Z(M ♭)◦, with

corresponding tuple (X, ι, λ, ρ) ∈ N (n − 1, 1)(Spf OĔs
). If n = 1, then M ♭ = 0 and X ∼= Xσ0 . If

n ≥ 2, then there exists a polarization-preserving OF -linear isomorphism (forgetting ρ)

X ∼= (X0)
n−2 × (Xs ⊗Zp OF ) (7.3.2)

for some level s quasi-canonical lift Xs (and X0 being the canonical lift), where Xs⊗ZpOF is equipped

with the polarization as in (5.6.2), where Xn−2
0 has the diagonal polarization λn−2

X0
for some principal

polarization λX0 on X0 if F/Qp is unramified, and where Xn−2
0 has a product polarization as in

(5.1.6) (with respect to some principal polarization λX0 on X0) if F/Qp is ramified.

For the inert case of the above assertions, see [LZ22a, §4.2] (we are using the same notation),

and also [KR11, Proposition 8.1] (there for n = 2).

For the ramified case, see [RSZ17, Proposition 7.1] (there for n = 2) and also the proof of [LL22,

Proposition 2.44] (also [LL22, Definition 2.45]; we are using their notation but with N replaced

by Z). In the ramified case, the two components Z(M ♭)◦ correspond to the two components of

N (n− 1, 1) (as in in Lemma 5.4.1, particularly part (5)), i.e. Z(M ♭)◦ → N (n− 1, 1) is surjective

on underlying topological spaces.

For the split case, Z(M ♭)◦ was defined in Definition 6.2.7. The assertion X ∼= (X0)
n−2× (Xs⊗Zp

OF ) follows from Lemma 6.2.5 (note that X in loc. cit. is X− in the present notation) and Remark

5.6.4.

Proposition 7.3.1. Let L♭ ⊆W be an OF -lattice of rank n − 1. Form the horizontal (flat) part

of the local special cycle Z(L♭), which we denote as Z(L♭)H . We have an equality of closed formal

subschemes

Z(L♭)H =
⋃

L♭⊆M♭⊆M♭∗

t(M♭)≤1

Z(M ♭)◦ (7.3.3)

in N (n− 1, 1), where the union runs over full rank lattices M ♭ ⊆ L♭F .

Proof. The union is the scheme-theoretic union (i.e. intersect associated ideal sheaves).

The inert case is [LZ22a, Theorem 4.2.1]. The ramified case is [LL22, Lemma 2.54] (if F/Qp

is ramified, the condition t(M ♭) ≤ 1 implies t(M ♭) = 1 since we have assumed n is even in the

ramified case).
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For the split case, the inclusion ⊆ is Corollary 6.2.9. By Lemma 6.2.11, the inclusion ⊇ will hold

if we can verify that Z(L♭)H ∼= Spf R for some finite flat OF̆ -algebra R with R ⊗OF̆
F̆ reduced

(with R not necessarily a domain). We will check this later by passing to global special cycles via

uniformization (Lemma 11.7.4). □

For readers interested in Krämer integral models for F/Qp ramified, we mention the analogous

[HSY23, Theorem 4.2], which we will not need.

8. Hermitian symmetric domain

8.1. Setup. We recall/fix some notation, mostly as in [Liu11, §4B] (see also [GS19, §2.2.2]). Let

n ≥ 1 be an integer, and let V be the non-degenerate C/R Hermitian space of signature (n− 1, 1).

We write (−,−) for the Hermitian pairing on V . Consider the Hermitian symmetric domain

D = {maximal negative definite C-linear subspaces of V }. (8.1.1)

Choosing a basis {e1, . . . , en} of V with Gram matrix diag(1n−1,−1), we take the identification

D {z ∈ Cn−1 : |z| < 1}

(a1 : · · · : an) (a1/an, . . . , an−1/an)

∼

(8.1.2)

and write zi = ai/an. Here (a1 : · · · : an) stands for the complex line spanned by a1e1 + · · ·+ anen.

We implicitly use the (standard) orientation in−1dz1 ∧ dz1 ∧ · · · ∧ dzn−1 ∧ dzn−1 on D.
We write E for the tautological line bundle over D, whose fiber over a point z ∈ D is identified

with the corresponding C-line in V . We give E the following metric: if wz ∈ E lies over z ∈ D, set
∥wz∥2 = −(wz, wz). We write c1(Ê) for the corresponding Chern form, given locally by

c1(Ê) =
1

2πi
∂∂ log ∥s∥2 (8.1.3)

for local nowhere vanishing holomorphic sections s of E .

8.2. Local special cycles. Given any tuple x = (x1, . . . , xm) with xi ∈ V , there is a local special

cycle

D(x) := {z ∈ D : z ⊥ xi for all i} ⊆ D. (8.2.1)

This is a closed complex submanifold of D.
Given x ∈ V , there is an associated global holomorphic section sx of the dual metrized tauto-

logical bundle Ê∨, given by sx(wz) = (x,wz). For x ∈ V and z ∈ D, we set R(x, z) := ∥sx(z)∥2 =

−(xz, xz) where ∥−∥ is the norm on Ê∨, and xz is the orthogonal projection of x to the C-line z.
We write Ei(u) := −

∫∞
1 eutt−1 dt for the exponential integral function, where u ∈ R is negative.

We will use the asymptotics

|Ei(u)| ≤ −u−1eu lim
u→0−

(Ei(u)− log |u|) = γ, (8.2.2)

where γ is the Euler–Mascheroni constant. These may be verified by brief computations (omitted,

but see the integral representation for γ in [WW73, §12.2 Example 4]).
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Given x ∈ V nonzero, we set32

ξ(x) = −Ei(−4πR(x, z)) (8.2.3)

which is a smooth function of z ∈ (D \ D(x)) with singularity of log type along D(x) (in the sense

of [GS90, (1.3.2.1)]).

For locally L1-forms ξ on D, we write [ξ] for the associated current. With x as above, we have

the Green current equation

− 1

2πi
∂∂[ξ(x)] + δD(x) = [ω(x)] (8.2.4)

where ω(x) is a smooth (1, 1)-form on D coinciding with the Kudla–Millson form up to a normal-

ization [Liu11, Proposition 4.9]. Given a linearly independent tuple x = (x1, . . . , xm) ∈ V m, we

consider the current

[ξ(x)] := [ξ(x1)] ∗ ([ξ(x2)] ∗ · · · ([ξ(xm−1)] ∗ [ξ(xm)])) (8.2.5)

defined via star product (compare [GS90, §2.1.3]), e.g.

[ξ(x1)]∗([ξ(x2)]∗[ξ(x3)]) = ξ(x1)∧δD(x2)∩D(x3)+ω(x1)∧ξ(x2)∧δD(x3)+ω(x1)∧ω(x2)∧ξ(x3). (8.2.6)

We then have the Green current equation

− 1

2πi
∂∂[ξ(x)] + δD(x) = [ω(x)] (8.2.7)

where ω(x) := ω(x1)∧· · ·∧ω(xm) (follows from (8.2.7) as in the proof of [GS90, Theorem 2.4.1(i)]).

For any nonzero x ∈ V and a ∈ C×, we have

lim
a→0

ω(ax) = c1(Ê∨) (8.2.8)

where the convergence is pointwise and uniform on compact subsets of D\D(x) (the derivatives also
converge uniformly on compact subsets). This limiting statement follows upon inspecting [GS19,

(2.40)] (see also (8.3.1) and (8.3.3)). For convenience, we set ω(x) := c1(Ê∨) when x = 0.

The group U(V ) acts on D via the moduli description. For any g ∈ U(V ), we have

g(D(w)) = D(g · w) g∗[ξ(x)] = [ξ(g · x)] (8.2.9)

where w ∈ V m is any tuple and x ∈ V m is any linearly independent tuple.

8.3. Green current convergence. We record some convergence estimates for the integrals ap-

pearing in our main Archimedean local identities (Section 19.1). We work with the explicit coor-

dinates z = (z1, . . . , zn−1) on D from Section 8.1 above (via the choice of basis {e1, . . . , en} for V ).

For any nonzero x ∈ V , we have

c1(Ê∨) =
1

2πi
∂∂ logR =

1

2πi

R∂∂R− ∂R ∧ ∂R
R2

(8.3.1)

=
1

2πi

(∑
dzj ∧ dzj
1− zz

+
(
∑
zjdzj) ∧ (

∑
zjdzj)

(1− zz)2

)
. (8.3.2)

32Note that Liu instead uses −Ei(−2πR(x, z)) [Liu11, §4B]. This is because he considers Gram matrices T =
1
2
(x, x) while we consider Gram matrices T = (x, x) (to match our global and non-Archimedean conventions). This

also affects other normalizations, e.g. our ω(x) is Liu’s ω(
√
2x). .
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and

ω(x) = − 1

2πi
∂∂ξ(x) =

1

2πi
e−4πR

(
−4π∂R ∧ ∂R

R
+
∂∂R

R
− ∂R ∧ ∂R

R2

)
(8.3.3)

on D \ D(x), where R := R(x, z) for short.

Lemma 8.3.1. For any fixed x ∈ V (possibly x = 0) with ω(x) =
∑

i,j ω(x)i,jdzi∧dzj, the functions
(1− zz)3ω(x)i,j are bounded on D.

Proof. If x =
∑
ajej , we have

R(x, z) =
(a1z1 + · · ·+ an−1zn−1 − an)(a1z1 + · · ·+ an−1zn−1 − an)

(1− zz)
. (8.3.4)

This expression and the formulas for ω(x) (see above) yield the lemma via straightforward compu-

tation (omitted). □

Lemma 8.3.2. Let x = (x1, . . . , xm) ∈ V m be an m-tuple with nonsingular Gram matrix (x, x).

Assume either that m ≥ n− 1 or that (x, x) is not positive definite. Then exists ϵ > 0 such that

n−1∑
i=1

R(xi, z) >
ϵ

1− zz
(8.3.5)

for all z ∈ D with |z| ≫ 0.

Proof. Given x =
∑

j ajej ∈ V , we use the temporary notation x · z := a1z1 + · · ·+ an−1zn−1 − an
for z = (z1, . . . , zn−1) ∈ Cn−1. Note R(x, z) = |x ·z|2(1−zz)−1 for z ∈ D. View Cn−1 as a standard

coordinate chart in the projective space of lines in V (i.e. the lines which are not orthogonal to

en). The zeros of
∑

i |xi · z|2 on Cn−1 correspond to those lines in V (in the given chart) which are

orthogonal to span(x). This (closed) set of zeros is disjoint from the set {z ∈ Cn−1 : |z| = 1}, which
corresponds to isotropic lines in V (i.e. no isotropic lines in V are orthogonal to span(x)). Hence∑

iR(xi, z)(1−zz) is bounded below (as a function of z ∈ D) by a positive constant as |z| → 1. □

Lemma 8.3.3. Let x = (x1, . . . , xm) ∈ V m be an m-tuple with nonsingular Gram matrix (x, x).

Assume either that m ≥ n− 1 or that (x, x) is not positive definite.

Let ω =
∑
ωI,JdzI ∧ dzJ (multi-indices) be any smooth complex differential form on D such that

each (1− zz)bωI,J is bounded on D for some real constant b≫ 0. Then the integral∫
D
ξ(x1)ω(x2) ∧ · · · ∧ ω(xm) ∧ ω (8.3.6)

is absolutely convergent.

Proof. After making a unitary change of basis for V , we may assume

x1 =


aen if (x1, x1) < 0

ae1 if (x1, x1) > 0

en−1 + en if (x1, x1) = 0

(8.3.7)

for some nonzero a ∈ R (where (e1, . . . , en) is the basis of V used to define the coordinates

(z1, . . . , zn−1) in Section 8.1). This will aid calculation in coordinates.
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Lemma 8.3.1 shows that it is enough to check (absolute) convergence of∫
D
ξ(x1)e

−4π(R(x2,z)+···+R(xm,z))(1− zz)−b (8.3.8)

for any b ∈ R (for the Euclidean measure on D). It is enough to check convergence when b≫ 0, so

we assume b ≥ n for convenience.

Set

uj :=
Re(zj)√
1− zz

vj :=
Im(zj)√
1− zz

(8.3.9)

for j = 1, . . . , n− 1. A change of variables gives∫
D
ξ(x1)e

−4π(R(x2,z)+···+R(xm,z))(1− zz)−b (8.3.10)

=

∫
R2(n−1)

ξ(x1)e
−4π(R(x2,z)+···+R(xm,z))(1 + |u|2 + |v|2)b−n,

where |u|2 :=
∑

j u
2
j and |v|2 :=

∑
j v

2
j , with R(xi, z) a function of u, v via (8.3.10), and with the

Euclidean measure du1 dv1 · · · dun−1dvn−1 understood on the right-hand side.

The asymptotics for Ei(u) as in (8.2.2) show it is enough to check convergence of the integrals∫
R2(n−1)

e−4π(R(x1,z)+R(x2,z)+···R(xm,z))(1 + |u|2 + |v|2)b−n (8.3.11)

and

∫
R2(n−1)

R(x1,z)≤1/(8π)

log(4πR(x1, z))e
−4π(R(x2,z)+···+R(xm,z))(1 + |u|2 + |v|2)b−n (8.3.12)

(where the second integral is over the set of (u, v) ∈ R2(n−1) satisfying R(x1, z) ≤ 1/(8π)).

Since we have (1 − zz)−1 = 1 + |u|2 + |v|2, Lemma 8.3.2 implies that (8.3.11) is absolutely

convergent (by exponential decay of the integrand as |u|2 + |v|2 →∞).

For convergence of (8.3.12), the same lemma shows that it is enough to check convergence of the

integral ∫
R2(n−1)

R(x1,z)≤1/(8π)

log(8πR(x1, z))e
−4πϵ(1+|u|2+|v|2)(1 + |u|2 + |v|2)b−n (8.3.13)

for all ϵ > 0 (using also R(x1, z) ≤ 1/(8π)). We check this convergence via casework.

Case when (x1, x1) < 0: In this case, we have R(x1, z) = a2(1 + |u|2 + |v|2). The integrand in

(8.3.12) is bounded on the compact set {(u, v) ∈ R2(n−1) : R(x1, z) ≤ 1/(8π)}, hence the integral is

convergent.

Case when (x1, x1) > 0: In this case, we have R(x1, z) = a2(u21 + v21). To check convergence of

(8.3.13), it is enough to check that∫
R2(n−1)

a2(u21+v
2
1)≤1/(8π)

log(4πa2(u21 + v21))e
−4πϵ(1+u22+v

2
2+···+u2n−1+v

2
n−1)(1+ u22 + v22 + · · ·+ u2n−1 + v2n−1)

b−n

(8.3.14)

is convergent (using R(x1, z) ≤ 1/(8π)). The integral over (u1, v1) converges because the singularity

at u1 = v1 = 0 is logarithmic, and the integral over (u2, v2, . . . , un−1, vn−1) converges because of

the exponential decay.
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Case when (x1, x1) = 0: In this case, we have R(x1, z) = (u1 −
√
1 + |u|2 + |v|2)2 + v21. Under

the condition R(x1, z) ≤ 1/(8π), we may bound | logR(x1, z)| ≤ C · (1 + |u1|) for some constant

C > 0. To check convergence of (8.3.13), it is thus enough to check that∫
R2(n−1)

(1 + |u1|)e−4πϵ(1+|u|2+|v|2)(1 + |u|2 + |v|2)b−n (8.3.15)

is convergent, which follows from exponential decay of the integrand. □

Remark 8.3.4. The convergence result of Lemma 8.3.3 fails in general if m < n− 1 and (x, x) is

positive definite. For example, if n = 3, if m = 1, and if x ∈ V with (x, x) > 0, the integral∫
D
ξ(x) ∧ ω(0)2 (8.3.16)

is not absolutely convergent.
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Part 3. Local change of heights

Fix an imaginary quadratic field F/Q. Write ∆ for the discriminant and σ for the nontrivial

involution. We allow 2 | ∆ in Part 3 unless otherwise specified. We set Fp := F ⊗Q Qp and

OFp
:= OF ⊗Z Zp.

Throughout Part 3, we write E for a number field, with ring of integers OE . Given a prime p,

we set OE,(p) := OE ⊗Z Z(p). We use Ĕ to denote a finite degree field extension of Q̆p, with ring

of integers OĔ . We write dp ⊆ OFp for the different ideal of OFp/Qp
. We abuse notation and also

mean dp :=
√
∆, which is a generator of the different ideal.

By a place w̆ of E ⊗Q Q̆p, we mean a prime ideal of E ⊗Q Q̆p (equivalently, an element of

HomQ̆p
(E ⊗Q Q̆p,Cp) up to automorphisms of Cp). We write Ĕw̆ for the residue field of w̆, with

ring of integers OĔw̆
. We use the shorthand w̆ | p to indicate a place of E ⊗Q Q̆p, and may use

subscripts (e.g. X ′
w̆ and ϕw̆ in Section 10.2) to indicate base-change from SpecOE,(p) to Spf OĔw̆

.

Whenever an OF -action or F -action is mentioned (e.g. on a sheaf of modules on SpecOE), we
assume that OE (resp. OĔ) is equipped with morphism OF → OE (resp. OF → OĔ).

We write Xs for a level s ≥ 0 quasi-canonical lifting of signature (1, 0) over SpecOĔ with its

OFp-action ιXs , as explained in Section 7. The framing ρXs of loc. cit. is unimportant in Part 3

(and will be omitted). As before, the notation Xσs means Xs but with OFp-action pre-composed by

σ.

Given a group scheme G over a base S, we typically write e : S → G for the identity section. We

abuse notation and use “e” simultaneously for different group schemes.

9. Faltings and “tautological” heights

9.1. Heights. Suppose A→ SpecOE is a semi-abelian Néron model of an abelian variety over E.

The Faltings height of A (or its generic fiber AE) is

hFal(AE) := hFal(A) :=
1

[E : Q]
d̂eg(ω̂A) (9.1.1)

where ω̂A = (ωA, ∥−∥) = (e∗
∧nΩ1

A/OE
, ∥−∥) is the Hermitian line bundle with norm ∥−∥ normal-

ized as in (4.3.1). The usual arithmetic degree d̂eg was recalled in Section 4.1. Any abelian variety

over a number field has everywhere potentially semi-abelian reduction, and the Faltings height of

any abelian variety B over SpecE is defined so that hFal(B) is remains constant under finite field

extensions E → E′. (We only consider stable Faltings height, as defined above.)

We also consider certain “tautological heights” to describe the arithmetic intersections appearing

in Section 4.7. The terminology we introduce for this (e.g. “Krämer datum”) is likely nonstandard.

Definition 9.1.1.

(1) Given a scheme S over SpecOF , a Krämer datum (of signature (n−1, 1)) is a tuple (A, ι,F)
where A→ S is an abelian scheme, where ι : OF → End(A) an action of signature (n−1, 1),
and where F ⊆ LieA is a ι-stable local direct summand of rank n − 1 such that the OF
action via ι on F (resp. (LieA)/F) is OF -linear (resp. σ-linear). We say that F is the

associated Krämer hyperplane.
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(2) Given a formal scheme S over Spf OFp , a local Krämer datum (of signature (n− 1, 1)) is a

tuple (X, ι,F) where X is a p-divisible group over S of height 2n and dimension n, where

ι : OFp → End(X) is an action of signature (n − 1, 1), and where F ⊆ LieX is a ι-stable

local direct summand of rank n− 1 such that the OF action via ι on F (resp. (LieX)/F)
is OF -linear (resp. σ-linear). We say that F is the associated Krämer hyperplane.

(3) A quasi-polarized Krämer datum (resp. quasi-polarized local Krämer datum) is a tuple

(A, ι, λ,F) (resp. (X, ι, λ,F)) where (A, ι, λ) is a Hermitian abelian scheme (Definition

3.1.1) (resp. (X, ι, λ) is a Hermitian p-divisible group (Definition 5.1.1, but we allow p = 2

even if F/Qp is ramified)) and (A, ι,F) is a Krämer datum (resp. (X, ι,F) is a Krämer

datum).

The name “Krämer datum” refers to the Krämer model mentioned in Remark 3.2.7. For an un-

derstood Krämer datum (A, ι, λ,F), we will use the shorthand E ∨ := (LieA)/F (cf. the “tautolog-

ical bundles” of Definition 3.1.7 and Definition 3.2.6). We use the same notation E ∨ := (LieX)/F
given an understood local Krämer datum (X, ι,F). In both cases, the sheaf E ∨ is locally free of

rank 1, and we call it the associated Krämer hyperplane quotient.

Definition 9.1.2. A morphism (resp. isogeny) of Krämer data (A1, ι1,F1) → (A2, ι2,F2) is an

OF -homomorphism (resp. isogeny) A1 → A2 such that im(F1) ⊆ F2, where im(F1) is the image

of F1 under LieA1 → LieA2. A morphism (resp. isogeny) of local Krämer data is defined in the

same way.

Lemma 9.1.3. Let S be a scheme over SpecOF . Assume either that S is a scheme over SpecOF [1/∆]

or that S = SpecR where R is a Dedekind domain with fraction field of characteristic 0.

(1) Suppose A→ S is an abelian scheme with an action ι : OF → End(X) of signature (n−1, 1).
Then the pair (A, ι) extends uniquely to a Krämer datum (A, ι,F) over S.

(2) Given pairs (A1, ι1) and (A2, ι2) as above, any OF -linear homomorphism (resp. isogeny)

A1 → A2 induces a morphism (resp. isogeny) of Krämer data.

(3) If S is a scheme over SpecOF [1/∆], the exact sequence

0→ F → LieA→ E ∨ → 0 (9.1.2)

has a unique OF -linear splitting.

Proof. If S is a scheme over SpecOF [1/∆], the claims hold because there is a unique decomposition

LieA = (LieA)+ ⊕ (LieA)− characterized by ι acting OF -linearly on the rank n − 1 subbundle

(LieA)+ (resp. σ-linearly on the rank 1 bundle (LieA)−).

Suppose instead that S = SpecR is a Dedekind domain with fraction field K of characteristic 0.

By localizing, it is enough to verify the lemma when R is a discrete valuation ring. Then part (1)

amounts to the following fact: given a finite free R-module M and any K-subspace W ⊆ M ⊗K,

there is a unique summand M ′ ⊆ M such that W = M ′ ⊗ K (namely M ′ = M ∩W ; note that

M ′ ⊆M is a saturated sublattice). We are applying this when M = LieA and W = (LieA⊗K)+,

in the notation above (and taking F =M ′). The signature (n−1, 1) condition forces the OF -action
on (LieA)/F to be σ-linear. These considerations also verify the claim in part (2) (since it holds

in the generic fiber). □
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Lemma 9.1.4. Let S be a formal scheme over Spf OFp. Assume either that p is unramified in OF
or that S = Spf R for an adic ring which is a Dedekind domain with fraction field of characteristic

0. Then the following conclusions hold.

(1) Suppose X is a p-divisible group of height 2n over S with an action ι : OFp → End(X) of

signature (n−1, 1). Then the pair (X, ι) extends uniquely to a local Krämer datum (X, ι,F)
over S.

(2) Given pairs (X1, ι1) and (X2, ι2) as above, any OFp-linear homomorphism (resp. isogeny)

X1 → X2 induces a morphism (resp. isogeny) of local Krämer data.

(3) If p is unramified, the exact sequence

0→ F → LieA→ E ∨ → 0 (9.1.3)

has a unique OFp-linear splitting.

Proof. This may be proved in the same way as Lemma 9.1.3. If S = Spf R for R a Dedekind domain

with fraction field of characteristic 0, note that R must be a complete discrete valuation ring. □

In the situations of Lemma 9.1.3 and 9.1.3, we also use the alternative terminology dual tauto-

logical bundle for the Krämer hyperplane quotient E ∨.

If (A, ι, λ) is a Hermitian abelian scheme of signature (n − 1, 1) over SpecOE with associated

quasi-polarized Krämer datum (A, ι, λ,F), we thus obtain a Hermitian line bundle Ê ∨ = (E ∨, ∥−∥)
on SpecOE as follows: the metric ∥−∥ is given by restricting the metric on LieA induced by λ

(which we take to be normalized as in (4.3.3)) along theOF -linear splitting E ∨[1/∆] ↪→ (LieA)[1/∆]

(where (−)[1/∆] means restriction to SpecOE [1/∆]). We say Ê ∨ is the associated metrized dual

tautological bundle. We also make the same construction over SpecOE,(p) and SpecE.

Definition 9.1.5. Let (A, ι, λ) be a Hermitian abelian scheme of signature (n−1, 1) over SpecOE .
The associated tautological height is

htau(AE) := htau(A) :=
1

[E : Q]
d̂eg(Ê ∨). (9.1.4)

The tautological height depends on the auxiliary data in the definition (not just AE or A), which

we have suppressed from notation. If (A, ι, λ) is a Hermitian abelian scheme of signature (n− 1, 1)

over SpecE such that A has everywhere potentially good reduction, we define the tautological height

htau(A) so that it is invariant under finite degree field extension E → E′.

Remark 9.1.6. If we instead work over OE [1/N ] for some integer N ≥ 1, we may define Faltings

height and tautological height as above, but where d̂eg now takes values in RN := R/
∑

p|N Q · log p
(as explained in Section 4.1).

9.2. Change along global isogenies. Let A1 → SpecOE and A2 → SpecOE be semi-abelian

Néron models of abelian varieties over E. We have

[E : Q](hFal(A2)− hFal(A1)) = d̂eg(ω̂A2)− d̂eg(ω̂A1) = −d̂eg(Hom(ω̂A2 , ω̂A1)). (9.2.1)
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Any isogeny ϕ : A1 → A2 defines a section ϕ of the Hermitian line bundle Hom(ω̂A2 , ω̂A1), which

gives

hFal(A2)− hFal(A1) =
1

[E : Q]

(
log ∥ϕ∥∞ +

∑
v<∞

log ∥ϕ∥v

)
(9.2.2)

=
1

2
log(deg ϕ)− 1

[E : Q]
log |e∗Ω1

kerϕ/OE
| (9.2.3)

(sum is over places v of E) as in [Fal86, Lemma 5], where |e∗Ω1
kerϕ/OE

| denotes the cardinal-

ity of the finite length OE-module e∗Ω1
kerϕ/OE

. Note |e∗Ω1
kerϕ/OE

| = |coker(ϕ∗ : ωA2 → ωA1)| =
|coker(ϕ∗ : LieA1 → LieA2)|. Also note

hFal(A2)− hFal(A1) =
∑
p

ap log p =
∑
p|deg ϕ

ap log p (9.2.4)

for some ap ∈ Q independent of ϕ.

Given Hermitian abelian schemes (A1, ι1, λ1) and (A2, ι2, λ2) of signature (n−1, 1) over SpecOE
with associated Hermitian line bundles Ê ∨

1 and Ê ∨
2 , we similarly have

htau(A2)− htau(A1) =
1

[E : Q]
d̂eg(Hom(Ê ∨

1 , Ê
∨
2 )). (9.2.5)

Any OF -linear isogeny ϕ : A1 → A2 defines a section ϕ of the Hermitian line bundle Hom(Ê ∨
1 , Ê

∨
2 ),

and we have

htau(A2)− htau(A1) =
1

[E : Q]

(
− log ∥ϕ∥∞ −

∑
v<∞

log ∥ϕ∥v

)
(9.2.6)

=
1

[E : Q]

(
− log ∥ϕ∥∞ + log |coker(ϕ∗ : E ∨

1 → E ∨
2 )|
)
. (9.2.7)

9.3. Change along local isogenies: Faltings. Given an isogeny ϕ : A1 → A2 of abelian schemes

over SpecOE,(p), we define the semi-global change of Faltings height

δFal,(p)(ϕ) := −
1

2
log | deg ϕ|p −

1

[E : Q]
log |e∗Ω1

kerϕ/OE,(p)
| (9.3.1)

where | − |p is the usual p-adic norm. We have δFal,(p)(ϕ) ∈ Q · log p. The formula for change of

Faltings height (9.2.2) shows that δFal,(p)(ϕ) = ap log p, in the notation of (9.2.4). In particular,

δFal,(p)(ϕ) does not depend on the choice of isogeny ϕ (and depends only on A1 and A2). If A1 and

A2 have everywhere potentially good reduction, we have

hFal(A2,E)− hFal(A1,E) =
∑
ℓ

δFal,(ℓ)(ϕ) =
∑
ℓ|deg ϕ

δFal,(ℓ)(ϕ) (9.3.2)

where ϕ also denotes the induced isogeny on Néron models over SpecOE,(ℓ) for each prime ℓ (after

enlarging E if necessary).

Given any isogeny ϕ : X1 → X2 of p-divisible groups over Spf OĔ , we have (LieXi)
∨ ∼= e∗Ω1

Xi[pN ]/ SpecOĔ

(canonically) for N ≫ 0 by [Mes72, Corollary II.3.3.17] (passing to the limit over OĔ/p
kOĔ as

k →∞), so there is a canonical exact sequence

0→ (LieX2)
∨ ϕ∗−→ (LieX1)

∨ → e∗Ω1
kerϕ/ SpecOĔ

→ 0 (9.3.3)
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of finite free OĔ-modules (note that LieX1 → LieX2 is injective, e.g. by Lemma B.2.2). If X1 and

X2 are moreover height 2n and dimension n, we define the local change of Faltings height

δ̆Fal(ϕ) :=
1

2
log(deg ϕ)− 1

[Ĕ : Q̆p]
lengthOĔ

(e∗Ω1
kerϕ/ SpecOĔ

) · log p. (9.3.4)

We have δ̆Fal(ϕ) = Q · log p, as well as

δ̆Fal(ϕ
′ ◦ ϕ) = δ̆Fal(ϕ

′) + δ̆Fal(ϕ) δ̆Fal([N ]) = 0 (9.3.5)

where ϕ′ : X2 → X3 is any isogeny of p-divisible groups and [N ] : X1 → X1 is the multiplication-by-

N isogeny (follows from (9.3.3)). Unlike δFal,(p)(−) from above, the quantity δ̆Fal(ϕ) may depend

on the isogeny ϕ.

Given isogenous abelian schemes over SpecOE,(p) and an isogeny ϕ : X1 → X2 of the associated

p-divisible groups, set

δFal,(p)(ϕ) :=
1

[E : Q]

∑
w̆|p

[Ĕw̆ : Q̆p]δ̆Fal(ϕw̆). (9.3.6)

where ϕw̆ denotes the base-change of ϕ to Spf OĔw̆
.

Lemma 9.3.1. Let A1, A2 be isogenous abelian schemes over SpecOE,(p). Let Xi be the associated

p-divisible groups. Given any isogenies ϕ̃ : A1 → A2 and ϕ : X1 → X2, we have

δFal,(p)(ϕ̃) = δFal,(p)(ϕ). (9.3.7)

Proof. The lemma is clear if ϕ is the isogeny associated with ϕ̃. If ϕ′ : X1 → X2 is another isogeny,

we have [pN ] ◦ϕ = ϕ′ ◦ϕ′′ for some isogeny ϕ′′ : X1 → X1 (Lemma B.2.2). By additivity of δ̆Fal and

since δ̆Fal([p
N ]) = 0, it is enough to show δFal,(p)(ϕ) = 0 if X1 = X2. For this purpose, we may also

assume A1 = A2.

Write A := A1 and X := X1 to lighten notation. As usual, AE and XE denote the respective

generic fibers (over SpecE). We write Isog(A) and Isog(X) for the set of self-isogenies of A and X.

We have canonical identifications

End(X) = End(XE) = End(Tp(XE)). (9.3.8)

The first equality holds by a theorem of Tate [Tat67a, Theorem 4] (base-change along SpecE →
SpecOE,(p) is fully faithful on p-divisible groups) and the second equality holds because XE is an

étale p-divisible group. Here, the notation End(Tp(XE)) means endomorphisms of Tp(XE) as a

Galois module.

Equip the finite Zp-module End(Tp(XE)) with the p-adic topology, and give Isog(X) the subspace

topology. We have δFal,(p)(ϕ ◦ ϕ′) = δFal,(p)(ϕ) for any ϕ ∈ Isog(X) and ϕ′ ∈ End(X) with ϕ′ ≡ 1

(mod p), since any such ϕ′ is an automorphism ofX. The map Isog(X)→ R given by ϕ 7→ δFal,(p)(ϕ)

is thus locally constant.

We also have canonical identifications

End(A)⊗Z Zp = End(AE)⊗Z Zp = End(Tp(AE)) = End(Tp(XE)). (9.3.9)
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The first equality holds by the Néron mapping property, and the second equality holds by Faltings’s

theorem [Fal86, §5 Corollary 1]. Hence Isog(A) = Isog(X) ∩ End(A) is a dense subset of Isog(X).

Since δFal,(p)(ϕ) = 0 for any ϕ ∈ Isog(A), this proves the lemma. □

Corollary 9.3.2. In the situation of Lemma 9.3.1, the quantity δFal,(p)(ϕ) does not depend on the

choice of isogeny ϕ : X1 → X2.

Proof. In the notation of the lemma, this follows immediately from ϕ̃ independence of δFal,(p)(ϕ̃)

(discussed above). □

We will use Lemma 9.3.1 to compute Faltings heights without producing isogenies on abelian

varieties, only isogenies on underlying p-divisible groups over SpecOE,(p). The analogous lemma

for tautological height (Lemma 9.4.5) serves a similar purpose.

9.4. Change along local isogenies: tautological. To locally decompose the change of tauto-

logical height along an isogeny, we impose an additional condition.

Definition 9.4.1.

(1) A Hermitian abelian scheme (A, ι, λ) of signature (n − 1, 1) over E is special if A is OF -
linearly isogenous to a product of elliptic curves, each with OF -action. A Hermitian abelian

scheme of signature (n − 1, 1) over SpecOE or SpecOE,(p) is special if its generic fiber is

special.

(2) A Hermitian p-divisible group (X, ι, λ) of signature (n− 1, 1) over Spf OĔ is special if X is

OFp-linearly isogenous to Xn−1
0 × Xσ0 .

We only use the term “special” this way in Part 3 (but we have global special cycles in mind, cf.

Lemma 4.7.1). The norm ∥−∥∞ below is as in (9.2.6).

Lemma 9.4.2. Let (A1, ι1, λ1) and (A2, ι2, λ2) be special Hermitian abelian schemes of signature

(n− 1, 1) over SpecE. For any OF -linear isogeny ϕ : A1 → A2, we have ∥ϕ∥2∞ ∈ Q>0.

Proof. Given such ϕ, form a diagram

B1 ×B⊥
1

ϕ1−→ A1
ϕ−→ A2

ϕ2−→ B2 ×B⊥
2 (9.4.1)

where each ϕi is an OF -linear isogeny, each Bi is a product of (n − 1) elliptic curves each with

OF -action of signature (1, 0), and each B⊥
i is an elliptic curve with OF -action of signature (0, 1).

Signature incompatibility implies that λ1 pulls back to a diagonal quasi-polarization λB1 × λB⊥
1

on B1 × B⊥
1 (e.g. HomOF

(Bσ
1 , B

⊥∨
1 ) = HomOF

(B⊥σ
1 , B∨

1 ) = 0). Similarly, λ2 pulls back along the

quasi-isogeny ϕ−1
2 to a diagonal quasi-polarization λB2 × λB⊥

2
.

With these quasi-polarizations, we have ∥ϕ2 ◦ ϕ ◦ ϕ1∥∞ = ∥ϕ2∥∞ ∥ϕ∥∞ ∥ϕ1∥∞ = ∥ϕ∥∞ since

∥ϕ1∥∞ = ∥ϕ2∥∞ = 1 (because ϕ1 and ϕ2 preserve quasi-polarizations, by construction). On

the other hand, if ϕ′ : B⊥
1 → B⊥

2 is the induced isogeny (signature incompatibility again implies

HomOF
(B1, B

⊥
2 ) = HomOF

(B⊥
1 , B2) = 0), we must have ∥ϕ2 ◦ ϕ ◦ ϕ1∥∞ = ∥ϕ′∥∞ (the latter norm

is taken with respect to λB⊥
1

and λB⊥
2
). For each embedding τ : E → C, the quantity ∥ϕ′∥2τ must

be the element of Q>0 satisfying

ϕ′∗λB⊥
2
=
∥∥ϕ′∥∥2

τ
λB⊥

1
, (9.4.2)
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(quasi-polarizations on elliptic curves are unique up toQ>0 scalar), so we have ∥ϕ′∥2∞ =
∏
τ : E→C ∥ϕ′∥

2
τ ∈

Q>0. □

For the rest of Section 9.4, we let (Ai, ιi, λi) for i = 1, 2 be special Hermitian abelian schemes of

signature (n − 1, 1) over SpecOE,(p), with associated Krämer hyerplanes Fi and dual tautological

bundles E ∨
i . We also let (Xi, ιi, λi) for i = 1, 2, 3 be special Hermitian p-divisible groups of signature

(n− 1, 1) over Spf OĔ , and reuse the notation Fi and E ∨
i for the respective Krämer hyerplanes and

dual tautological bundles.

Given (X1, ι1, λ1) and an OFp-linear isogeny Y1 × Y ⊥
1 → X1 with Y1 being a product of n − 1

canonical liftings of signature (1, 0) and Y ⊥
1 being a canonical lifting of signature (0, 1), there is an

induced decomposition

Tp(X1)
0 = Tp(Y1)

0 ⊕ Tp(Y ⊥
1 )0 (9.4.3)

on rational Tate modules (of the generic fibers). Equip Y1 × Y ⊥
1 with the pullback of λ1. This

gives a product quasi-polarization λY1 × λY ⊥
1

on Y1 × Y ⊥
1 (by signature incompatibility as in the

abelian scheme case, i.e. HomOFp
(Y σ

1 , Y
⊥∨
1 ) = HomOFp

(Y ⊥σ
1 , Y ∨

1 ) = 0). Hence the decomposition

in (9.4.3) is orthogonal for the Hermitian pairing on Tp(X1)
0.

Consider (X2, ι2, λ2) with OFp-linear isogeny Y2×Y ⊥
2 → X2 as above and, and suppose ϕ : X1 →

X2 is an OFp-linear isogeny. Then the induced map ϕ∗ : Tp(X1)
0 → Tp(X2)

0 sends Tp(Y1)
0 to

Tp(Y2)
0 and similarly for Tp(Y

⊥
i )0 (again by signature incompatibility, i.e. HomOFp

(Y1, Y
⊥
2 ) =

HomOFp
(Y ⊥

1 , Y2) = 0). In particular, the decomposition in (9.4.3) does not depend on the choice

of Y1 × Y ⊥
1 → X1.

AnyOFp-linear isogeny ϕ : X1 → X2 thus gives a nonzero element ϕ ∈ HomFp(Tp(Y
⊥
1 )0, Tp(Y

⊥
2 )0).

We then set

∥ϕ∥∞,p := ∥ϕ∥ (9.4.4)

where ∥−∥ on the right means the norm for the (one-dimensional and non-degenerate) Fp-Hermitian

space HomFp(Tp(Y
⊥
1 )0, Tp(Y

⊥
2 )0).

We may now proceed as in the Faltings height case. Given an OF -linear isogeny ϕ : A1 → A2,

we define the semi-global change of tautological height

δtau,(p)(ϕ) :=
1

[E : Q]

(
log | ∥ϕ∥∞ |p + log |coker(ϕ∗ : E ∨

1 → E ∨
2 )|
)

(9.4.5)

where | − |p is the usual p-adic norm (well-defined by Lemma 9.4.2). We have δtau,(p)(ϕ) ∈ Q · log p.
Since A1 and A2 have everywhere potentially good reduction (implied by the special hypothesis:

elliptic curves with OF -action over number fields have everywhere potentially good reduction) the

formula for change of tautological height (9.2.6) implies

htau(A2,E)− htau(A1,E) =
∑
ℓ

δtau,(ℓ)(ϕ) =
∑
ℓ|deg ϕ

δtau,(ℓ)(ϕ) (9.4.6)

where ϕ also denotes the induced isogeny on Néron models over SpecOE,(ℓ) for each prime ℓ (after

enlarging E if necessary). In particular, δtau,(p)(ϕ) does not depend on the choice of isogeny ϕ.
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Given any OFp-linear isogeny ϕ : X1 → X2, we define the local change of tautological height

δ̆tau(ϕ) := log ∥ϕ∥∞,p +
1

[Ĕ : Q̆p]
lengthOĔ

(coker(ϕ∗ : E ∨
1 → E ∨

2 )) · log p. (9.4.7)

We have δ̆tau(ϕ) ∈ Q · log p, as well as

δ̆tau(ϕ
′ ◦ ϕ) = δ̆tau(ϕ

′) + δ̆tau(ϕ) δ̆tau([N ]) = 0 (9.4.8)

where ϕ′ : X2 → X2 is any OFp-linear isogeny and [N ] : X1 → X1 is the multiplication-by-N isogeny.

For use in later calculations, we note the identity

lengthOĔ
(coker(ϕ∗ : Lie(X1)→ Lie(X2))) (9.4.9)

= lengthOĔ
(coker(ϕ∗ : F1 → F2)) + lengthOĔ

(coker(ϕ∗ : E ∨
1 → E ∨

2 ))

(by the snake lemma).

Lemma 9.4.3. If Fp/Qp is nonsplit, we have δ̆tau(ϕ) = δ̆tau(ϕ
′) for any two OF -linear isogenies

ϕ, ϕ′ : X1 → X2.

Proof. Set X = Xn−1
0 ×Xσ0 , and equip X with any OF -action-compatible quasi-polarization. Select

any OF -linear isogeny ϕ′′ : X → X1. Using the additivity property δ̆tau(ϕ ◦ϕ′′) = δ̆tau(ϕ)+ δ̆tau(ϕ
′′)

and similarly for ϕ′, this reduces us to the case where X = X1.

As in the proof of Lemma 9.3.1, there exists an isogeny ϕ′′ : X → X such that [pN ] ◦ ϕ = ϕ′ ◦ ϕ′′

for some N ≥ 0, so the additivity properties of δ̆tau reduce us to showing δ̆tau(ϕ) = 0 when

(X1, ι1, λ1) = (X2, ι2, λ2).

Since HomOF
(X0,X

σ
0 ) = HomOF

(Xσ0 ,X0) = 0, we must have ϕ = f × f⊥ where f : Xn−1
0 → X0

and f⊥ : Xσ0 → Xσ0 . We find δ̆tau(ϕ) = δ̆tau(f
⊥) = 0 since f⊥ : Xσ0 → Xσ0 is an automorphism times

[pN ] for some N ≥ 0. □

Remark 9.4.4. If Fp/Qp is split, then Lemma 9.4.3 fails (consider multiplication by (1, p) and

(p, 1) in OFp
∼= Zp × Zp). This is the reason for Lemma 9.4.5 below, which allows us to uniformly

treat all cases of Fp/Qp.

Continuing to allow Fp/Qp inert/ramified/split, now suppose that (Xi, ιi, λi) is the Hermitian

p-divisible group associated with (Ai, ιi, λi), for i = 1, 2. Since each (Ai, ιi, λi) is special, there

automatically exists an OF -linear isogeny A1 → A2 after possibly replacing E by a finite extension

(by the theory of complex multiplication for elliptic curves). Given any OFp-linear isogeny ϕ : X1 →
X2, set

δtau,(p)(ϕ) :=
1

[E : Q]

∑
w̆|p

[Ĕw̆ : Q̆p]δ̆tau(ϕw̆) (9.4.10)

where ϕw̆ denotes the base-change of ϕ to Spf OĔw̆
.

Lemma 9.4.5. Suppose that (Xi, ιi, λi) is the Hermitian p-divisible group associated with (Ai, ιi, λi),

for i = 1, 2. For any OF -linear isogenies ϕ̃ : A1 → A2 and ϕ : X1 → X2, we have

δtau,(p)(ϕ̃) = δtau,(p)(ϕ). (9.4.11)
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Proof. This may be proved exactly as in Lemma 9.3.1, now requiring isogenies and endomorphisms

to be OF -linear. □

Corollary 9.4.6. In the situation of Lemma 9.4.5, the quantity δtau,(p)(ϕ) does not depend on the

choice of isogeny ϕ : X1 → X2.

Proof. In the notation of the lemma, this follows immediately from ϕ̃ independence of δtau,(p)(ϕ̃)

(discussed above). □

9.5. Serre tensor. We compute local changes of Faltings and tautological heights for isogenies

involving the Serre tensor p-divisible groups Xs⊗ZpOFp . These results will later be used to compute

heights of arithmetic special 1-cycles.

Given s ∈ Z≥0 and a quasi-canonical lifting Xs over Spf OĔ , we write λXs for an understood

principal polarization of Xs. Recall that λXs exists and is unique up to Z×
p scalar (Lemma 5.6.1 and

its proof). As in Section 5.1, we consider the map λtr : OFp → O∗
Fp

determined by the Zp-bilinear
pairing trFp/Qp

(xσy) on OFp , where O∗
Fp

:= HomZp(OFp ,Zp).
We equip Xs⊗ZpOFp with its Serre tensor OFp-action ι and the polarization −ι(d2p)−1◦(λXs⊗λtr).

We equip X0×Xσ0 with its diagonal OFp action ιX0×ισX0
(of signature (1, 1)) and the diagonal quasi-

polarization −ι(d2p)−1 ◦ (λX0 × λX0).

Lemma 9.5.1. For the OFp-linear isogeny

X0 ⊗Zp OFp X0 × Xσ0

x⊗ a (ιX0(a)x, ιX0(a
σ)x)

ϕ

(9.5.1)

we have δ̆Fal(ϕ) = 0. Assuming p ̸= 2 if Fp/Qp is ramified, we also have δ̆tau(ϕ) = 0.

Proof. We already know deg ϕ = |∆|−1
p (see (5.1.3) and surrounding discussion).

Pick any OFp-linear isomorphism LieX0
∼= OĔ . Then the map ϕ∗ : Lie(X0⊗Zp OFp)→ Lie(X0×

Xσ0 ) may be identified with the map of OĔ-modules f : OĔ⊗ZpOFp → OĔ⊕OĔ given by f(x⊗a) =
(ax, aσx). Thus ϕ∗ is given by the matrix in (5.1.4) (the same matrix describing ϕ after identifying

X0 ⊗Zp OFp
∼= X2

0 using a Zp-basis of OFp). That matrix has determinant which generates the

different ideal dp, hence

lengthOĔ
(coker(ϕ∗ Lie(X0 ⊗Zp OFp)→ Lie(X0 × Xσ0 ))) =

1

2
[Ĕ : Q̆p]vp(∆). (9.5.2)

This gives 2δ̆Fal(ϕ) = log deg ϕ− vp(∆) log p = 0.

We also know that ϕ∗(λX0 × λX0) = λX0 ⊗ λtr (see discussion surrounding (5.1.3) again). Thus

∥ϕ∥∞,p = 1, in the notation of (9.4.4).

Let F1 ⊆ Lie(X0⊗ZpOFp) and F2 ⊆ Lie(X0×Xσ0 ) be the (unique) associated Krämer hyperplanes,

with associated Krämer hyperplane quotients E ∨
1 and E ∨

2 . If Fp/Qp is unramified, then ϕ is an

isomorphism, hence coker(ϕ∗ : E ∨
1 → E ∨

2 ) = 0. If Fp/Qp is ramified, assume p ̸= 2 and select a

uniformizer ϖ ∈ OFp satisfying ϖσ = −ϖ. Then (ϖ ⊗ 1 + 1⊗ϖ) ∈ OĔ ⊗Zp OFp is a generator of

F1. We thus find coker(ϕ∗ : F1 → F2) ∼= OĔ/ϖOĔ .
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By (9.4.9), the previous computations imply coker(ϕ∗ : E ∨
1 → E ∨

2 ) = 0, and hence

δ̆tau(ϕ) = log ∥ϕ∥∞,p +
1

[Ĕ : Q̆p]
lengthOĔ

(coker(ϕ∗ : E ∨
1 → E ∨

2 )) · log p = 0. (9.5.3)

□

For any given integer s ∈ Z≥0, recall the constants δtau(s), δFal(s) ∈ Q (“local change of ‘tauto-

logical’ and Faltings heights”) as defined in (7.2.7) and surrounding text.

Lemma 9.5.2. Let ψs : X0 → Xs be any isogeny of degree ps. For the OFp-linear isogeny

X0 ⊗Zp OFp Xs ⊗Zp OFp

x⊗ a ψs(x)⊗ a

ϕ

(9.5.4)

we have

δ̆Fal(ϕ) = −2δ̆tau(ϕ) = −2δtau(s) · log p. (9.5.5)

Proof. Recall that ψs is unique up to pre-composition by elements of O×
Fp

(7.2.4). Write F1 and

F2 (resp. E ∨
1 and E ∨

2 ) for the associated Krämer hyerplanes (resp. dual tautological bundles) of

X0 ⊗Zp OFp and Xs ⊗Zp OFp respectively.

We have deg ϕ = (degψs)
2 = p2s. Since quasi-polarizations on X0 are unique up to Q×

p scalar

(follows from Drinfeld rigidity and the corresponding statement for X0 in Section 5.1), we have

ψ∗
sλXs = bλX0 for some b ∈ psZ×

p . Hence we have ϕ∗(λXs ⊗ λtr) = b(λX0 ⊗ λtr), so ∥ϕ∥∞,p = p−s/2.

Pick any identifications LieX0
∼= LieXs ∼= OĔ of OĔ-modules. With these identifications,

the map ψs,∗ : LieX0 → LieXs is multiplication by some c ∈ OĔ satisfying [Ĕ : Q̆p]vp(c) =

lengthOĔ
(coker(ψs,∗ : LieX0 → LieXs)).

We also obtain identifications Lie(X0⊗Zp OFp)
∼= Lie(Xs⊗Zp OFp) of OĔ ⊗Zp OFp-modules, with

induced identifications F1
∼= F2 and E ∨

1
∼= E ∨

2 . Then ϕ∗ : Lie(X0 ⊗Zp OFp) → Lie(Xs ⊗Zp OFp)

is identified with multiplication by c, and hence ϕ∗ : E ∨
1 → E ∨

2 must also be multiplication by c.

Hence

lengthOĔ
(coker(ϕ∗ : Lie(X0 ⊗Zp OFp)→ Lie(Xs ⊗Zp OFp))) = 2[Ĕ : Q̆p]vp(c) (9.5.6)

lengthOĔ
(coker(ϕ∗ : E ∨

1 → E ∨
2 )) = [Ĕ : Q̆p]vp(c). (9.5.7)

The lemma now follows from the formula for lengthOĔ
(coker(ψs,∗ : LieX0 → LieXs)) in (7.2.6). □

10. Heights and quasi-canonical liftings

10.1. A descent lemma. To compute Faltings and tautological heights, we will produce isogenies

of p-divisible groups over SpecOE,(p) from isogenies over Spf OĔw̆
for any choice of w̆ | p. We now

explain this descent procedure, in a more general setup.

Lemma 10.1.1. Let S′ → S be a morphism of schemes whose scheme-theoretic image is all of S.

Suppose X is a p-divisible group over S which satisfies End0(X) = End0(XS′). Let Y and Z be
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p-divisible groups over S which are isogenous to X. The base-change maps

Hom0(Y,Z)→ Hom0(YS′ , ZS′) Hom(Y, Z)→ Hom(YS′ , ZS′)

Isog0(Y, Z)→ Isog0(YS′ , ZS′) Isog(Y,Z)→ Isog(YS′ , ZS′)

are bijections.

Proof. Choose isogenies ϕY : X → Y and ϕZ : X → Z. There is a commutative diagram

α End0(X) End0(XS′) α′

ϕZ ◦ α ◦ ϕ−1
Y Hom0(Y,Z) Hom0(YS′ , ZS′) ϕZ,S′ ◦ α′ ◦ ϕ−1

Y,S′

∼

∼

∼

where horizontal arrows are base-change. The vertical arrows are isomorphisms, and the upper

horizontal arrow is an isomorphism by hypothesis. Hence the bottom arrow is an isomorphism.

Suppose β ∈ Hom0(Y, Z) is any quasi-homomorphism. The functor T 7→ {ϕ ∈ Hom(T, S) :

ϕ∗β is a homomorphism} is represented by a closed subscheme of T , see [RZ96, Proposition 2.9]. If

β|S′ is a homomorphism, then β must also be a homomorphism, since the smallest closed subscheme

of S through which S′ factors is all of S (by hypothesis). Hence Hom(Y, Z)→ Hom(YS′ , ZS′) is an

isomorphism. The statements about (quasi-)isogenies follow from an essentially identical argument,

replacing End and Hom with Isog, and noting Isog0(X) = (End0(X))× (e.g. by Lemma B.2.3). □

Remark 10.1.2. We will be interested in the case where S = SpecOE,(p) and S′ = SpecOĔ for

some finite extension Ĕ of Ĕw̆ for some w̆ | p. In this case, Lemma 10.1.1 admits an alternative

proof: a quasi-homomorphism of p-divisible groups over SpecE is a homomorphism if and only if

the map on rational Tate modules preserves (integral) Tate modules, and this can be checked after

base-change to Spec Ĕ. Then apply the theorem of Tate [Tat67a, Theorem 4] which states that the

generic fiber functor for p-divisible groups over SpecOE,(p) (similarly, for SpecOĔ) is fully faithful.

Lemma 10.1.3. Let X be a p-divisible group over a formal scheme S. Suppose there is a decom-

position X = X1 × X2 as fppf sheaves of abelian groups (on (Sch/S)fppf ). Then X1 and X2 are

both p-divisible groups.

Proof. Write e1, e2 ∈ End(X) for the projections to X1 and X2 respectively. As being a p-divisible

group can be checked locally on (Sch/S)fppf , assume S is a usual scheme.

It is clear that the multiplication by p map [p] : X → X is a surjection if and only if [p] : X1 → X1

and [p] : X2 → X2 are surjections. We also have X[pn] = X1[p
n] ×X2[p

n] for all n ≥ 1. Thus the

natural map lim−→X[pn]→ X is an isomorphism if and only if lim−→X1[p
n]→ X1 and lim−→X2[p

n]→ X2

are isomorphisms.

Next, note X1[p] = ker(e2 : X[p] → X[p]) and similarly X2[p] = ker(e1 : X[p] → X[p]). Since

X[p] is representable by a finite locally free scheme over S, we conclude that X1[p] and X2[p] are

represented by schemes which are finite and finitely presented over S. We also have short exact
101



sequences

0→ X1[p]→ X[p]→ X2[p]→ 0

0→ X2[p]→ X[p]→ X1[p]→ 0

so Lemma B.2.1 implies that X1[p] and X2[p] are finite locally free over S. □

Corollary 10.1.4. Let S′ → S and X be as in Lemma 10.1.1. Suppose Y and Z are p-divisible

groups over S isogenous to X.

If YS′ = Y ′
1 × · · · × Y ′

r and ZS′ = Z ′
1 × · · · × Z ′

r for p-divisible groups Y ′
i and Z ′

i over S
′, then

there are unique decompositions Y = Y1 × · · · × Yr and Z = Z1 × · · · ×Zr such that Yi|S′ = Y ′
i and

Zi|S′ = Z ′
i for all i. For any i, the base-change maps

Hom0(Yi, Zi)→ Hom0(Yi,S′ , Zi,S′) Hom(Yi, Zi)→ Hom(Yi,S′ , Zi,S′)

Isog0(Yi, Zi)→ Isog0(Yi,S′ , Zi,S′) Isog(Yi, Zi)→ Isog(Yi,S′ , Zi,S′)

are bijective.

Proof. The decomposition YS′ = Y ′
1 × · · · × Y ′

r corresponds to a system of orthogonal idempotents

d′1, . . . , d
′
r ∈ End(YS′), i.e. d′2i = d′i for all i and d

′
id

′
j = 0 for all i ̸= j. Lifting to a decomposition

Y = Y1×· · ·×Yr is the same as lifting {d′i}i to a system of orthogonal idempotents {di}i in End(Y ).

Such a lift exists and is unique by Lemma 10.1.1. The same applies for Z, and we write {e′i}i and
{ei}i for the corresponding systems of idempotents. Using Lemma 10.1.1, we have

Hom0(Yi, Zi) = diHom
0(Y,Z)ei = d′iHom

0(YS′ , ZS′)e′i = Hom0(Yi,S′ , Zi,S′)

Hom(Yi, Zi) = diHom(Y, Z)ei = d′iHom(YS′ , ZS′)e′i = Hom(Yi,S′ , Zi,S′).

The statement about Isog0 then follows from Lemma B.2.3, and the statement about Isog follows

from the relation Isog(−,−) = Isog0(−,−) ∩Hom(−,−). □

10.2. Minimal isogenies. Given any abelian scheme A → S over some base S, we can form the

Serre tensor abelian scheme A ⊗Z OF given by (A ⊗Z OF )(T ) := A(T ) ⊗Z OF for S-schemes T .

There is a natural action of OF on A ⊗Z OF , as we have discussed for p-divisible groups (B.1.1).

If λ : A → A∨ is a quasi-polarization, then λ ⊗ λtr : A ⊗Z OF → A∨ ⊗Z O∨
F
∼= (A ⊗Z OF )∨ is a

polarization, where λtr : OF → O∨
F is induced by the trace pairing, as above.

Let A0 → SpecOE,(p) be any (relative) elliptic curve with OF -action ι0 of signature (1, 0), and

let λ0 be the unique principal polarization of A0. For n ≥ 2, set

A := An−2
0 × (A0 ⊗Z OF ) (10.2.1)

with OF action ι which is diagonal on An−2
0 and the Serre tensor action on A0 ⊗Z OF , and polar-

ization λn−2
0 × (|∆|−1(λ0 ⊗ λtr)). Then (A, ι, λ) is a special Hermitian abelian scheme of signature

(n − 1, 1). We write (X, ι, λ) for the associated special Hermitian p-divisible group of signature

(n− 1, 1), with

X = Xn−2
0 × (X0 ⊗Zp OFp) (10.2.2)

where X0 is the p-divisible group of A0. For any w̆ | p, the base-change X0,w̆ is a canonical lifting.

The preceding notation (e.g. for A0 and X0) will be fixed for all of Section 10.2.
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In Proposition 10.2.1 and Corollary 10.2.2 below, we equip Xn−2
0 ×(Xs⊗ZpOFp) with the diagonal

OFp action (which is the Serre tensor action on Xs ⊗Zp OFp) and a product quasi-polarization, for

some quasi-polarization of Xn−2
0 and the quasi-polarization −ι(d2p)−1 ◦ (λXs ⊗λtr) on (Xs⊗Zp OFp).

Proposition 10.2.1. Let (A′, ι′, λ′) be a special Hermitian abelian scheme of signature (n − 1, 1)

over SpecOE,(p), with associated Hermitian p-divisible group (X ′, ι′, λ′). Replace E with a finite

extension if necessary, so that A and A′ are OF -linearly isogenous.

Suppose there exists a OFp-linear quasi-polarization preserving isomorphism

X ′
Spf OĔ

∼= Xn−2
0 × (Xs ⊗Zp OFp) (10.2.3)

over Spf OĔ, where Ĕ is a finite extension of OĔw̆′
, for some w̆′ | p and s ≥ 0. Fix an isomorphism

X0,Spf OĔ

∼= X0.

(1) Then there exists an OFp-linear quasi-polarization preserving isomorphism

X ′ ∼= Xn−2
0 × (Xs ⊗Zp OFp) (10.2.4)

over SpecOE,(p), for some p-divisible group Xs of height 2 and dimension 1 with fixed iden-

tification Xs,Spf OĔ

∼= Xs, such that (10.2.4) recovers (10.2.3) upon base-change to Spf OĔ.
On the right-hand side of (10.2.4), the polarization is the product of a polarization on

Xn−2
0 and a quasi-polarization −(d2p)−1 · (λs⊗Zp λtr) on Xs⊗ZpOFp, where λs is a principal

polarization on Xs.

(2) For any w̆ | p, the base-change Xs,w̆ is a quasi-canonical lifting of level s, and hence there

is an identification as in (10.2.4) for all w̆ | p.
(3) There exists an isogeny ψs : X0 → Xs of degree p

s. The OFp-linear product isogeny ϕ : X →
X ′ given by

ϕ := idXn−2
0
× (ψs ⊗ 1) : Xn−2

0 × (X0 ⊗Zp OFp)→ Xn−2
0 × (Xs ⊗Zp OFp) (10.2.5)

over SpecOE,(p) satisfies

δ̆Fal(ϕw̆) = −2δ̆tau(ϕw̆) = −2δtau(s) · log p for all w̆ | p (10.2.6)

δFal,(p)(ϕ) = −2δtau,(p)(ϕ) = −2δtau(s) · log p. (10.2.7)

Proof. Note that X satisfies the hypotheses of Lemma 10.1.1 with S = SpecOE,(p) and S′ =

SpecOĔw̆
for any w̆ | p, as End(X) ∼=Mn,n(OFp) over both SpecOE,(p) and Spf Ow̆ for any w̆. The

same holds for S′ = SpecOĔ . Again, we pass between Spf OĔw̆
and SpecOĔw̆

as in Appendix B.3.

The proposition then follows from repeated applications of Lemma 10.1.1 and Corollary 10.1.4,

as we now explain.

(1) and (2) Corollary 10.1.4 implies that (10.2.3) descends to a OFp-linear product decomposi-

tion X ′ ∼= X ′n−2
0 × (Xs⊗Zp OFp) over SpecOE,(p) for some X ′

0 descending X0 (first pick any

identification of p-divisible groups Xs⊗Zp OFp
∼= X2

s, then descend the OFp-action), and the

fully-faithfulness in Corollary 10.1.4 implies End(Xs) = OFp,s (with OFp,s = Zp + psOFp as

in Section 7.2) over SpecOE,(p) and also over Spf Ow̆ for any w̆ | p. The fully-faithfulness

in Corollary 10.1.4 also implies that the fixed OFp-linear isomorphism X0,w̆ → X0 lifts
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to an isomorphism X0 → X ′
0. The polarization on Xn−2

0 × (Xs ⊗Zp OFp) descends to

Xn−2
0 × (Xs ⊗Zp OFp) by Corollary 10.1.4 again (applied to X ′ and X ′∨; note that the

property of being a polarization is represented by a closed subfunctor of SpecOE,(p), hence
can be checked in the generic fiber or over Spec Ĕ)

(3) If ψs : X0 → Xs is any isogeny of degree ps (exists and is unique up to precomposition

by O×
Fp
, as discussed in Section 7.2), we apply Corollary 10.1.4 to descend to an isogeny

ψs : X0 → Xs of degree ps. Equation (10.2.6) now follows from Lemma 9.5.2. Equation

(10.2.7) follows from this (by the definitions in (9.3.6) and (9.4.10)). □

We will use the following reformulation (tailored to our intended application for global heights

via local special cycles). In the corollary statement and proof, Aσ0 and An−1
0 × Aσ0 are equipped

with the product quasi-polarizations −∆−1λ0 and −∆−1(λ0 × · · · × λ0) (where Aσ0 = A0 but with

OF -action ι ◦ σ, as above).

Corollary 10.2.2. Let S be a reduced scheme which is finite flat over SpecOF . Let (A′, ι′, λ′,F ′)

be a quasi-polarized Krämer datum over S (of signature (n − 1, 1)) for n ≥ 2, with associated

metrized line bundles ω̂ and Ê ∨ on S. Assume that (A′, ι′, λ′) is special at all generic points of S.

Let (X ′, ι′, λ′) be the associated Hermitian p-divisible group.

Suppose we are given a finite étale surjection∐
j

Zj → S ×SpecZ Spec Z̆p (10.2.8)

such that each restricted map Θj : Zj → S×SpecZSpec Z̆p has constant degree deg(j) onto its image.

Assume that Θj and Θj′ have disjoint images for j ̸= j′.

For each irreducible component Z ↪→
∐
j Zj, write ĔZ for the residue field of its generic point.

Assume there exists an isomorphism of Hermitian p-divisible groups

X ′|Spf OĔZ
∼= Xn−2

0 × (XsZ ⊗Zp OFp) (10.2.9)

for all Z, where sZ ∈ Z≥0 is an integer depending on Z.
We then have

d̂eg(Ê ∨)− (degZ S) · htau(Aσ0 ) =
∑
j∈J

1

deg(j)

∑
Z↪→Zj

(degZ̆p
Z)δtau(sZ) log p (10.2.10)

d̂eg(ω̂)− (degZ S) · hFal(An−1
0 ×Aσ0 ) =

∑
j∈J

1

deg(j)

∑
Z↪→Zj

(degZ̆p
Z)δFal(sZ) log p

modulo
∑

ℓ ̸=pQ · log ℓ, where the inner sums run over all irreducible components Z ↪→ Zj.

Proof. In the corollary statement, the expression “modulo
∑

ℓ̸=pQ · log ℓ” means an equality of

elements in the additive quotient R/(
∑

ℓ̸=pQ · log ℓ). The notation degZ S (resp. degZ̆p
Z) denotes

the degree of S → SpecQ (resp. Z → Spec Z̆p) in the generic fiber.

By additivity, we immediately reduce to the case where S is irreducible. Then J consists of

a single element j. By normalization, we may assume S = SpecOE for a number field E. We

may also enlarge E as necessary so that (A0, ι, λ0) also extends to SpecOE , and such that there

exists an OF -linear isogeny ϕ : An−2
0 × (A0 ⊗Z OF ) → A. We also consider the OF -linear isogeny
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ϕ′ : An−2
0 × (A0⊗ZOF )→ An−2

0 × (A0×Aσ0 ) which is the identity on An−2
0 and given by (x⊗ a) 7→

(ax, aσx) for (A0 ⊗Z OF )→ A0 ×Aσ0 .
Since δtau(ϕ

′) = 0 (Lemma 9.5.1, along with the local decomposition (9.4.10), also Lemma 9.4.5),

the decomposition in (9.4.6) shows

d̂eg(Ê ∨)− [E : Q] · htau(An−1
0 ×Aσ0 ) = [E : Q]δtau,(p)(ϕ) mod

∑
ℓ̸=p

Q · log ℓ. (10.2.11)

We have
∑

Z↪→Zj
(degZ̆p

Z) = deg(j) · [E : Q]. Applying Proposition 10.2.1(3) (combined with

the “isogeny independence” result of Lemma 9.4.5) now shows δtau,(p)(ϕ) = δtau(sZ) log p for any

Z ↪→ Zj . This also shows that all sZ are equal (when S is irreducible): the quantity δtau(s) takes

distinct values for distinct s ∈ Z≥0 (in the nonsplit cases, note δtau(s) has strictly decreasing p-adic

valuation as s increases, for s > 2). We also have htau(A
n−1
0 × Aσ0 ) = htau(A

σ
0 ) (straightforward

from the definition). This verifies (10.2.10) for d̂eg(Ê ∨) and the tautological height.

Since δFal(ϕ
′) = 0 (Lemma 9.5.1, along with the local decomposition (9.3.6), also Lemma 9.3.1),

(9.4.6) similarly shows

d̂eg(ω̂)− [E : Q] · hFal(An−1
0 ×Aσ0 ) = [E : Q]δFal,(p)(ϕ) mod

∑
ℓ ̸=p

Q · log ℓ. (10.2.12)

Applying Proposition 10.2.1(3) (combined with the “isogeny independence” result of Lemma 9.3.1)

verifies (10.2.10) for d̂eg(ω̂) and the Faltings height, just as for tautological height above. □

In the situation above, we have

htau(A
σ
0 ) = hCM

tau hFal(A
n−1
0 ×Aσ0 ) = n · hCM

Fal (10.2.13)

in the notation of (4.3.6) and (4.3.5).

Remark 10.2.3. In Proposition 10.2.1(3), it was important that ψs was an isogeny of minimal

degree ps. If ψs were replaced by an arbitrary isogeny f : X0 → Xs, we would not be able to

determine δ̆Fal(f) or δ̆tau(f) using only deg f in the case when Fp/Qp is split (due to Remark 9.4.4).
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Part 4. Uniformization

We use global notation as in Part 1, e.g. F is an imaginary quadratic field extension of Q with

nontrivial involution a 7→ aσ and discriminant ∆. The notation Af (resp. Apf ) will always denote

the finite adèle ring (resp. finite adèle ring away from p) for Q.

For all of Part 4, let L0 := OF be the rank one Hermitian OF -lattice with pairing (x, y) := xσy.

Let L be any non-degenerate Hermitian OF -lattice of rank n and signature (n−r, r), with associated

moduli stackM (Definition 3.1.2 and Section 3.2).

We fix some group-theoretic setup (common in the literature, e.g. [RSZ20; BHKRY20]). Set

V0 := L0 ⊗OF
F V := L⊗OF

F

G′ := {(g0, g) ∈ GU(V0)×GU(V ) : c(g0) = c(g)} ⊆ GU(V0)×GU(V )

where c : GU(V0)→ Gm and c : GU(V )→ Gm are the similitude characters. We use the shorthand

Lp := L⊗Z Zp Vp := V ⊗Q Qp VR := V ⊗Q R

and use similar notation for local versions of other Hermitian spaces. Given a tuple x ∈ V m, we

write xp ∈ V m
p and x∞ ∈ V m

R and xf ∈ (V ⊗Q Af )m and xp ∈ (V ⊗Q Apf )
m for the corresponding

projections (and similarly for other Hermitian spaces).

There is an isomorphism

G′ GU(V0)× U(V )

(g0, g) (g0, g
−1
0 g).

(∗)

To avoid potential confusion: whenever we write (g0, g) ∈ G′, we mean g0 ∈ GU(V0) and g ∈ GU(V )

with the same similitude factor.

We use factorizable open compact subgroups K ′
f = K0,f ×Kf ⊆ G′(Af ) as in Section 3.4, where

K0,f ⊆ GU(V0)(Af ) and Kf ⊆ U(V )(Af ) (using also (∗)).
Recall the moduli stack with level structureMK′

f
defined in Section 3.4. We do not require K ′

f

to be a small level, soMK′
f
is allowed to be a stack.

Notation. In Part 4, we implicitly fix an open compact subgroup K ′
f ⊆ G′(Af ) as above. We

abusively suppress K ′
f from notation: we write

M Z(T ) LZ(T ) LZ(T )V ,p

instead ofMK′
f
, Z(T )K′

f
, LZ(T )K′

f
, LZ(T )V ,p,K′

f
, etc..

For example, given a Hermitian matrix T ∈ Hermm(Q) (with entries in F ) and an appropriate

scheme S, our notation entails

Z(T )(S) = {(A0, ι0, λ0, A, ι, λ, η̃0, η̃, x) over S}

where (η̃0, η̃) is a K
′
f level structure and x ∈ HomOF

(A0, A)
m satisfies (x, x) = T .
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11. Non-Archimedean

Fix a prime p. If p is not inert, we assume the signature is (n − r, r) = (n − 1, 1). We assume

that L⊗ZZp is self-dual. If p is ramified, we assume n is even, L is self-dual (for the trace pairing),

and p ̸= 2.

In all cases, we assume the implicit level K ′
f = K0,f ×Kf at p is

K0,p = KL0,p Kp = KL,p. (11.0.1)

Recall that these denote the stabilizers of L0 and L, respectively.

Set OFp
:= OF ⊗Z Zp and OF,(p) := OF ⊗Z Z(p) and Fp := F ⊗Q Qp. As in Section 5, we write

F̆p for the completion of the maximal unramified extension of Fp is p is nonsplit (resp. F̆p := Q̆p if

p is split, with a choice of morphism Fp → F̆p). In all cases, OF̆p
(resp. k) will denote the ring of

integers (resp. residue field) of F̆p.

We discuss Rapoport–Zink uniformization [RZ96, §6], as applied to supersingular loci on special

cycles by Kudla–Rapoport [KR14, §5, §6] (there in the inert case, p ̸= 2). For p inert or ramified,

the material in Sections 11.1 to 11.6 is essentially a repackaging of Rapoport–Zink and Kudla–

Rapoport. However, we need modified arguments at split places: the abelian varieties will be

ordinary. We give a mostly uniform treatment for inert/ramified/split places. We also allow p = 2

if p is inert, except in Section 11.9.

Section 11.9 is the newest part of Section 11. Here, we explain how to use uniformization to

reduce (global) Faltings or “tautological” heights to quantities expressed in terms of local special

cycles and the “local change of heights” from Part 3 (with the main input being Corollary 10.2.2).

Section 11.7 is the next newest part of Section 11. We use global special cycles and an “ap-

proximation” argument to prove certain properties of local special cycles. Some of these results are

available or implicit in the literature (for p nonsplit, sometimes with p ̸= 2 hypotheses and signature

(n − 1, 1) hypotheses); we indicate this where relevant. Our methods of proof are different, based

on the approximation argument mentioned above.

Section 11.8 is the next newest part of Section 11. We explain how to reduce global “vertical

intersection numbers” to local “vertical intersection numbers”.

Sections 11.7 to 11.9 will need detailed information on the construction of Rapoport–Zink uni-

formization. This is our other reason for giving an exposition of uniformization in Sections 11.1-11.6,

as we need to explain the relevant maps (and fix notation) to give precise statements.

Sections 11.1 to 11.5 state the precise Rapoport–Zink uniformization map for special cycles.

The proof of uniformization appears in Section 11.6 (and allows p = 2 inert). We differ slightly

from [RZ96] by working directly with formal algebraic stacks (rather than requiring sufficient level

structure) in the sense of [Eme20]. We occasionally need some notions on formal algebraic stacks

which are not defined in [Eme20]; we will define these as needed.

Throughout Section 11, we freely use the relevant Rapoport–Zink spaces and their (Kudla–

Rapoport) local special cycles as in Section 5.
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11.1. Formal completion. Throughout Section 11, the notation T will always mean an m ×m
Hermitian matrix with F -coefficients, i.e. T ∈ Hermm(Q). If p is split in OF , we assume rank(T ) ≥
n− 1. Form the special cycle Z(T )→M.

Suppose p is nonsplit. The supersingular locus on Z(T )k := Z(T ) ×SpecOF
Spec k is the

subset Z(T )ss ⊆ |Z(T )k| of the underlying topological space33 consisting of geometric points

(A0, ι0, λ0, A, ι, λ, η̃0, η̃, x) with A supersingular. The supersingular locus Z(T )ss is a closed subset

of |Z(T )k| (by the Katz–Grothendieck theorem on specialization for Newton polygons). The formal

completion of Z(T )SpecOF̆p
:= Z(T )×SpecOF

SpecOF̆p
along its supersingular locus is the (strictly

full) substack Z̆(T ) ⊆ Z(T )SpecOF̆p
given by

Z̆(T ) := {α ∈ Z(T )SpecOF̆p
(S) : α(|S|) ⊆ Z(T )ss} (11.1.1)

for schemes S over SpecOF̆p
, where the condition α(|S|) ⊆ Z(T )ss means that the associated

map on underlying topological spaces |S| → |Z(T )SpecOF̆p
| factors through Z(T )ss (with α ∈

Z(T )SpecOF̆p
(S) “viewed” as a morphism S → Z(T )SpecOF̆p

by the 2-Yoneda lemma).

If p is split, we define

Z̆(T ) := Z(T )Spf OF̆p
:= Z(T )×SpecOF

Spf OF̆p
. (11.1.2)

This is also the formal completion of Z(T )SpecOF̆p
along its special fiber. For any geometric point

(A0, ι0, λ0, A, ι, λ, η̃0, η̃, x) of Z̆(T ), the abelian variety A is ordinary (because Lemma 4.7.1 implies

A is isogenous to a product of elliptic curves with OF action).

In all cases, Z̆(T ) is a locally Noetherian formal algebraic stack in the sense of [Eme20] (formal

completion is discussed in [Eme20, Example 5.9]). The structure morphism Z̆(T ) → Spf OF̆p
is

formally smooth,34 formally locally of finite type,35 separated, and quasi-compact. If K ′
f is a small

level, then Z̆(T ) is a locally Noetherian formal scheme.

If M = Z(T ) (e.g. T = ∅ or T = 0), we set M̆ := Z̆(T ). If p is nonsplit, this is the formal

completion ofMSpecOF̆p
along its supersingular locusMss.

11.2. Local special cycles away from p. Given an m-tuple xp = [x1, . . . , xm] ∈ (V ⊗QApf )
m, we

consider an “away-from-p” local special cycle

Z ′(xp) := {(g0, g) : G′(Apf )/K
′p
f : g−1g0xi ∈ L⊗Z Ẑp for all xi ∈ xp}. (11.2.1)

33By the underlying topological space |X | of a formal algebraic stack X , we mean the underlying topological space

of its reduced substack Xred. As Xred is an algebraic stack, it has an underlying topological space in the sense of

[SProject, Section 04XE].
34Given a morphism f of categories fibered in groupoids over some base scheme, there is a category of dotted

arrows [SProject, Definition 0H18] associated to the infinitesimal lifting problem along each square-zero thickening

of affine schemes. We say that f is formally smooth (resp. formally étale) (resp. formally unramified) if each such

category of dotted arrows is nonempty (resp. a setoid with exactly one isomorphism class) (resp. either empty or a

setoid with exactly one isomorphism class).
35We say a morphism of locally Noetherian formal algebraic stacks is formally locally of finite type if it is locally

of finite type on underlying reduced substacks.
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We often view Z ′(xp) and G′(Apf )/K
′p
f as constant formal schemes over Spf OF̆p

. We also define

the “away-from-p” local special cycle

Z(xp) := {g : U(V )(Apf )/K
p
f : g−1xi ∈ L⊗Z Ẑp for all xi ∈ xp}. (11.2.2)

The isomorphism G′(Apf )/K
′p
f → GU(V0)(Apf )/K

p
0,f × U(V )(Apf )/K

p
f (∗) induces an isomorphism

Z ′(xp)
∼−→ GU(V0)(Apf )/K

p
0,f ×Z(x

p). (11.2.3)

11.3. Framing objects. To define the uniformization map, we fix an object (A0, ιA0 , λA0 ,A, ιA, λA, η̃ηη0, η̃ηη) ∈
M(k) (“basepoint of the uniformization”). If p is nonsplit (resp. split), we assume A is supersin-

gular (resp. A is OF -linearly isogenous to An−r
0 × (Aσ

0 )
r); such data exists by Lemma 3.1.5 and

Remark 3.2.4. Let (X0, ιX0 , λX0 ,X, ιX, λX) be the tuple obtained by passing to p-divisible groups

(e.g. X is the p-divisible group of A). We use this as the framing object over k to define the

Rapoport–Zink space N ′ (Definition 5.1.8). Set N := N (n− r, r) (Definition 5.1.3).

In the supersingular cases, the abelian varietyA is automaticallyOF -linearly isogenous toAn−r
0 ×

(Aσ
0 )
r, since

Hom0
F (A

n−r
0 × (Aσ

0 )
r,A)⊗Q Qp

∼−→ Hom0
F (X

n−r
0 × (Xσ

0 )
r,X) (11.3.1)

by Tate’s isogeny theorem (for any supersingular abelian variety over a finite field, some power of

Frobenius will be a power of p, e.g. by [RZ96, Lemma 6.28]); then use uniqueness of the framing

object (X, ιX, λX) up to isogeny (Section 5.1).

SinceMSpecOF̆p
→ SpecOF̆p

is smooth, this framing object (A0, . . .) admits a lift (A0, ιA0 , λA0 ,A, ιA, λA, ỹ0, ỹ) ∈
M(Spf OF̆p

), which we also fix. We fix representatives

ηηη0 : T
p(A0)

∼−→ L0 ⊗Z Ẑp ηηη : HomOF⊗ZẐp(T
p(A0), T

p(A))
∼−→ L⊗Z Ẑp (11.3.2)

for the Kp
0 -orbit η̃ηη0 and the Kp-orbit η̃ηη (see Section 3.4). Recall that ηηη preserves Hermitian pairings

but ηηη0 need not. We also write

y0 : T
p(A0)

∼−→ L0 ⊗Z Ẑp y : HomOF⊗ZẐp(T
p(A0), T

p(A))
∼−→ L⊗Z Ẑp (11.3.3)

for the identifications induced by ηηη0 and ηηη.

We define Hermitian F -modules

W := Hom0
F (A0,A) W⊥ :=

Hom0
F (A

σ
0 ,A) if p is split

0 if p is nonsplit
(11.3.4)

V0 := Hom0
F (A0,A0) V := W ⊕W⊥ (11.3.5)

where the direct sum defining V is orthogonal. In all cases, the Hermitian pairing is (x, y) := x†y ∈
F . All of these Hermitian spaces are positive definite (positivity of the Rosati involution).

The canonical maps

W ⊗Q Qp
∼−→ Hom0

Fp
(X0,X) W⊥ ⊗Q Qp

∼−→ Hom0
Fp
(Xσ

0 ,X) (11.3.6)

are isomorphisms of Hermitian spaces. In the nonsplit (hence supersingular) cases, this follows

from Tate’s isogeny theorem as above. In the split case, this follows because A is OF -linearly
isogenous to An−r

0 × (Aσ
0 )
r. In particular, the local invariant is ε(Wp) = (−1)r if p is nonsplit

(resp. ε(Wp) = 1 if p is split).
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If p is nonsplit, the natural map

W ⊗Q Apf → HomF⊗QAp
f
(T p(A0)

0, T p(A)0) (11.3.7)

is an isomorphism of Hermitian spaces, by similar reasoning.

If p is split, any OF -linear isogeny An−1
0 ×Aσ

0 → A defines an F -linear orthogonal decomposition

T p(A)0 = T p(An−1
0 )0 ⊕ T p(Aσ

0 )
0. (11.3.8)

This decomposition is independent of the choice of isogeny because Hom0
F (A0,A

σ
0 ) = Hom0

F (A
σ
0 ,A0) =

0 (e.g. because End0(A0) = F ). Then the natural map

W ⊗Q Apf → HomF⊗QAp
f
(T p(A0)

0, T p(An−1
0 )0) (11.3.9)

is an isomorphism of Hermitian spaces.

Given a tuple x ∈Wm, we write

xp ∈Wm
p = Hom0

Fp
(X0,X) (11.3.10)

xp ∈Wm ⊗Q Apf ⊆ HomF⊗Ap
f
(T p(A0)

0, T p(A)0)m = V m ⊗Q Apf (11.3.11)

for the respective images of x (using ηηη for the identification with V m ⊗Q Apf in the second line).

11.4. Framed stack. We consider the stack Z̆(T )framed over Spf OF̆p
, given by

Z̆(T )framed(S) :=

(α, ϕ0, ϕ) :

α = (A0, ι0, λ0, A, ι, λ, η̃0, η̃, x) ∈ Z̆(T )(S)
ϕ0 : A0 → A0,S and ϕ : A→ AS quasi-isogenies

such that ϕ∗0λA0,S = bλ0 and ϕ∗λA,S = bλ

for some b ∈ Q>0


for schemes S over Spf OF̆p

. The similitude factor b is allowed to vary (and is only required to be

locally constant). IfM = Z(T ), we set M̆framed := Z̆(T )framed. There is a canonical forgetful map

Θ: Z̆(T )framed → Z̆(T ) (11.4.1)

sending (α, ϕ0, ϕ) 7→ α. This will be the uniformization map (Section 11.6).

There is a canonical isomorphism

Z̆(T )framed
∼−→

∐
x∈Wm

(x,x)=T

Z ′(xp)×Z ′(xp) (11.4.2)

which we now describe. Here Z ′(xp) is the local special cycle at p from Section 5.2, and Z ′(xp) is

the away-from-p local special cycle from Section 11.2.

Consider (α, ϕ0, ϕ) ∈ Z̆(T )framed(S) as above. Passing to p-divisible groups gives a datum

(X0, ι0, λ0, X, ι, λ) (e.g. X is the p-divisible group of A), along with a framing quasi-isogeny

ρ : XS → XS induced by ϕ (where S := Sk) and similarly a framing ρ0 induced by ϕ0. We

also obtain g0 := y0 ◦ ϕ0,∗ ◦ η̃−1
0 ∈ G0(Apf )/K

p
0,f and g := y ◦ (ϕ−1,∗

0 ϕ∗) ◦ η̃−1 ∈ U(V )(Apf )/K
p
f where

ϕ0,∗ : T
p(A0)

0 → T p(A0)
0 and

ϕ−1,∗
0 ϕ∗ : HomF⊗QAp

f
(T p(A0)

0, T p(A)0)→ HomF⊗QAp
f
(T p(A0)

0, T p(A)0) (11.4.3)
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is pre- and post-composition (when S is connected, pick any geometric point; there is no dependence

on this choice). In general, g0 and g will be locally constant elements. For any x ∈ HomF (A0, A)
m

over a connected base S, we have ϕ ◦ x ◦ ϕ−1
0 ∈Wm (canonically), by Mumford’s rigidity lemma

for morphisms of abelian schemes [MFK94, Corollary 6.2]. In the not-necessarily connected case,

we obtain a locally constant element of Wm.

The above constructions give a map

Z̆(T )framed N ′ ×G′(Apf )/K
′p
f ×Wm

(α, ϕ0, ϕ) ((X0, ι0, λ0, ρ0, X, ι, λ, ρ), (g0, g0g), ϕ ◦ x ◦ ϕ−1
0 )

(11.4.4)

which induces an isomorphism from Z̆(T )framed to the open and closed subfunctor∐
x∈Wm

(x,x)=T

Z ′(xp)×Z ′(xp) N ′ ×G′(Apf )/K
′p
f ×Wm. (11.4.5)

One can verify that the map in (11.4.2) is an isomorphism by decomposing the kernels of framing

quasi-isogenies (rescale to obtain an isogeny) into their p-power and ℓ-power torsion subgroups.

The isomorphism implies that Z̆(T )framed is a locally Noetherian formal scheme.

11.5. Quotient. Consider the algebraic groups

I0 := GU(V0) I1 := U(W)× U(W⊥) I ′ := I0 × I1 (11.5.1)

over Q. Unless specified otherwise, an element (γ0, γ) ∈ I ′ will mean γ0 ∈ I0 and γ ∈ GU(W) ×
GU(W⊥) with γ−1

0 γ ∈ I1.
Uniformization will involve the stack quotient [I ′(Q)\Z̆(T )framed] for an action of I ′(Q) on

Z̆(T )framed, which we now describe. For Q-algebras R, there are canonical identifications

I0(R) = {γ0 ∈ End0F (A0)⊗Q R : γ†0γ0 ∈ R
×} (11.5.2)

I1(R) = {γ ∈ End0F (A)⊗Q R : γ†γ = 1} (11.5.3)

(act on V0 and V by post-composition). View I ′(Q) as a discrete group. Then (γ0, γ) ∈ I ′(Q)

acts on Z̆(T )framed as (α, ϕ0, ϕ) 7→ (α, γ0 ◦ ϕ0, γ ◦ ϕ). We are abusing notation: the elements γ0

and γ lift (uniquely, by Mumford’s rigidity lemma or Drinfeld rigidity and Serre–Tate) to quasi-

endomorphisms of A0,S and AS respectively.

In terms of the isomorphism in (11.4.2), the action of I ′(Q) on Z̆(T )framed admits the following

(equivalent) description. By the isomorphism in (11.3.6), the group I ′(Qp) acts on N ′ (discussed

in Section 5.3). By (11.5.3), we have a faithful action of I(Apf ) on

HomF⊗Ap
f
(T p(A0)

0, T p(A)0) = V ⊗Q Apf (11.5.4)

by post-composition. This induces a homomorphism I1(Apf ) → U(V )(Apf ) and hence an action of

I ′(Apf ) on G′(Apf )/K
′p
f (left multiplication). The group I ′(Q) also acts on W by the projection

I ′(Q)→ U(W).

Hence I ′(Q) acts on

N ′ ×G′(Apf )/K
′p
f ×Wm. (11.5.5)
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Under the inclusion (11.4.5), this induces the same action on Z̆(T )framed described previously. Both

descriptions will be useful for us.

We now form the (fppf) stack quotient∐
x∈Wm

(x,x)=T

Z ′(xp)×Z ′(xp)→

[
I ′(Q)\

( ∐
x∈Wm

(x,x)=T

Z ′(xp)×Z ′(xp)

)]
(11.5.6)

The left-hand side is a locally Noetherian formal scheme, and the right-hand side is a locally

Noetherian formal algebraic stack which is formally locally of finite type over Spf OF̆p
. The right-

hand side is also [I ′(Q)\Z̆(T )framed]. The quotient map is representable by schemes, separated,

étale, and surjective.

Using (5.2.5) (and (5.4.4)) and (11.2.3) (various incarnations of the isomorphism G′ ∼−→ GU(V0)×
U(V )) yields a canonical isomorphism from the left-hand side of (11.5.6) to

GU(V0)/K0,f ×
∐

x∈Wm

(x,x)=T

Z(xp)× U(W⊥
p )/K1,L⊥

p
×Z(xp) (11.5.7)

where K1,L⊥
p
⊆ U(W⊥

p ) is the unique maximal open compact subgroup (since W⊥ has rank 0 or

1). This is a disjoint union of various local special cycles Z(xp), indexed by the (discrete) set

Jp(T ) := GU(V0)/K0,f ×
∐

x∈Wm

(x,x)=T

U(W⊥
p )/K1,L⊥

p
×Z(xp). (11.5.8)

In particular, every element j ∈ Jp(T ) defines a morphism

Θj : Z(xp)→ [I ′(Q)\Z(T )framed] (11.5.9)

which is étale, separated, and representable by schemes. Given j ∈ Jp(T ), we let Aut(j) ⊆ I ′(Q)

be the stabilizer for the action of I ′(Q) on Jp(T ).

The right-hand side of (11.5.6) is then identified with[
GU(V0)(Q)\

(
GU(V0)(Af )/K0,f

)]
×

[
I1(Q)\

( ∐
x∈Wm

(x,x)=T

Z(xp)× U(W⊥
p )/K1,L⊥

p
×Z(xp)

)]
.

(11.5.10)

We have

deg[GU(V0)(Q)\(GU(V0)(Af )/K0,f )] = [KL0,f : K0,f ] · hF /|O×
F | (11.5.11)

where the left-hand side denotes (stacky) groupoid cardinality, where [KL0,f : K0,f ] is the index of

K0,f in KL0,f , and hF is the class number of OF . In the case where rank(T ) ≥ n − 1 (we have

already assumed rank(T ) ≥ n− 1 if p is split), the groupoid[
I1(Q)\

( ∐
x∈Wm

(x,x)=T

U(W⊥
p )/K1,L⊥

p
×Z(xp)

)]
(11.5.12)
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has finite automorphism groups and finitely many isomorphism classes, and its groupoid degree is

essentially a product of special values of local Whittaker functions away from p (Lemma 20.4.1).

In the case rank(T ) ≥ n− 1, the map Θj associated with any j ∈ Jp(T ) is thus representable by

schemes and finite étale of constant degree degΘj = |Aut(j)|.

11.6. Uniformization. We explain how the uniformization morphism Θ: Z̆(T )framed → Z̆(T )
(11.4.1) descends to an isomorphism of locally Noetherian formal algebraic stacks

Θ̃ :

[
I ′(Q)\

( ∐
x∈Wm

(x,x)=T

Z ′(xp)×Z ′(xp)

)]
∼−→ Z̆(T ). (11.6.1)

The main point is surjectivity on k-points via the Hasse principle (Lemma 11.6.2).

When p is split, we will allow a change of choice of framing data (A0, ιA0 , λA0 ,A, ιA, λA, η̃ηη0, η̃ηη),

ηηη0, and ηηη, possibly depending on T .

Lemma 11.6.1. The map Θ: Z̆(T )framed → Z̆(T ) factors uniquely through a monomorphism36

Θ̃ : [I ′(Q)\Z̆(T )framed]→ Z̆(T ) (11.6.2)

of formal algebraic stacks. The map Θ̃ is formally locally of finite type and formally étale.

Proof. Suppose (α, ϕ0, ϕ) and (α′, ϕ′0, ϕ
′) are objects of Z̆(T )framed(S), and suppose f ′ : α → α′ is

an isomorphism of objects in the groupoid Z̆(T )(S) (for some base scheme S). We claim there is a

unique γ′ = (γ0, γ) ∈ I ′(Q) such that f ′ induces an isomorphism γ′ · (α, ϕ0, ϕ)
∼−→ (α′, ϕ′0, ϕ

′) in the

setoid Z̆(T )framed(S).

The map f is given by a pair of isomorphisms f0 : A0 → A′
0 and f : A→ A′ (where α = (A0, . . .)

and α′ = (A′
0, . . .), with notation as above). Then we take γ0 = ϕ′0 ◦ f0 ◦ ϕ

−1
0 and γ = ϕ′ ◦ f ◦ ϕ−1.

Hence Θ̃ is a monomorphism.

The map Θ̃ is a map between locally Noetherian formal algebraic stacks which are formally

locally of finite type over Spf OF̆p
, so Θ̃ is formally locally of finite type.

The property of being formally étale may be checked “formally étale locally on the source”. The

quotient map Z̆(T )framed → [I ′(Q)\Z̆(T )framed] is representable by schemes and formally étale, so

it is enough to check that Θ: Z̆(T )framed → Z̆(T ) is formally étale. This property amounts to

the following rigidity statement for abelian schemes: given any first order thickening of schemes

T → T ′ on which which p is locally nilpotent, and given abelian schemes A1 and A2 over T ′, any

quasi-homomorphism A1,T → A2,T lifts uniquely to a quasi-homomorphism A1 → A2 (e.g. by

Drinfeld rigidity and Serre–Tate). □

Lemma 11.6.2. The map Θ(k) : Z̆(T )framed(k)→ Z̆(T )(k) (on groupoids of k-points) is surjective

(resp. surjective for some choice of framing data) on isomorphism classes if p is nonsplit (resp.

split).

36By a monomorphism of formal algebraic stacks, we mean a morphism which is fully faithful on underlying fibered

categories.
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Proof. If Z̆(T ) is empty, there is nothing to show, so assume Z̆(T ) is nonempty. If p is split, we

can change the framing object to assume it extends to (A0, ιA0 , λA0 ,A, ιA, λA, η̃ηη0, η̃ηη,x) ∈ Z̆(T )(k)
(i.e. x ∈Wm with (x,x) = T ). This implies that T has rank n−1 if p is split (we already assumed

rank(T ) ≥ n−1 if p is split, then see Remark 4.7.2). We still know that A is OF -linearly isogenous

to An−1
0 ×Aσ

0 (Lemma 4.7.1).

In all cases, the task is to show that any (A′
0, ιA′

0
, λA′

0
,A′, ιA′ , λA′ , η̃ηη0, η̃ηη,x

′) ∈ Z̆(T )(k) ad-

mits a framing (ϕ0, ϕ), i.e. quasi-isogenies ϕ0 : A
′
0 → A0 and ϕ : A′ → A which preserve quasi-

polarizations up to the same scalar in Q>0.

Fix any OF -linear isogeny ϕ0 : A
′
0 → A0, which exists because A′

0 and A0 are elliptic curves

with OF -action of the same signature (see the proof of Lemma 4.7.1). Let b ∈ Q>0 be such that

ϕ∗0λA0 = bλA′
0
. Set W′ := Hom0

F (A
′
0,A

′) with the Hermitian pairing (x, y) = x†y.

Case p is nonsplit: There is an isomorphism of F vector spaces

Hom0
F (A

′,A) HomF (W
′,W)

ϕ (f 7→ ϕ ◦ f ◦ ϕ−1
0 ).

(11.6.3)

An element ϕ ∈ Hom0
F (A

′,A) satisfies ϕ†ϕ = b if and only if ϕ corresponds to an isomorphism of

Hermitian spaces W′ →W. But we have W′ ⊗Q Apf ∼= W⊗Q Apf ∼= V ⊗Q Apf as Hermitian spaces,

we have ε(W′) = ε(W) = (−1)r, and we have W′
R
∼= WR (both are positive definite of rank n).

So we have W′ ∼= W as Hermitian spaces, by the Hasse principle for Hermitian spaces (Landherr’s

theorem).

Case p is split: Fix OF -linear isogenies B × B⊥ → A and B′ × B′⊥ → A′, where B ∼= An−1
0 ,

B⊥ ∼= Aσ
0 , B

′ ∼= A′n−1
0 , and B′⊥ ∼= A′σ

0 . Equip B×B⊥ and B′ ×B′⊥ with the quasi-polarizations

pulled back from λA and λA′ on A and A′, respectively.

Any F -linear quasi-isogeny ϕ : A′ → A decomposes as a product of quasi-isogenies B′ → B

and B′⊥ → B⊥, since HomF (B
′,B⊥) = HomF (B

′⊥,B) = 0 (because of the opposite signatures).

We write ϕ⊥ : B′⊥ → B⊥ for the quasi-isogeny induced by ϕ. By similar reasoning, the quasi-

polarization on B × B⊥ is the product of a quasi-polarization on B and a quasi-polarization on

B⊥.

There is an isomorphism of F vector spaces

Hom0
F (A

′,A) HomF (W
′,W)×Hom0

F (B
′⊥,B⊥)

ϕ (f 7→ (ϕ ◦ f ◦ ϕ−1
0 )), ϕ⊥.

(11.6.4)

An element ϕ ∈ Hom0
F (A

′,A) satisfies ϕ†ϕ = b if and only if ϕ corresponds to an isomorphism of

Hermitian spaces W′ →W and with ϕ⊥†ϕ⊥ = b.

We have x′ ∈ W′ and x ∈ W with (x′,x′) = (x,x) = T . Since rank(T ) = rank(W′) =

rank(W) = n− 1, this implies W′ ∼= W as Hermitian spaces.

For every prime ℓ ̸= p, the natural map

Hom0
F (B

′⊥,B⊥)⊗Q Qℓ HomFℓ
(Tℓ(B

′⊥)0, Tℓ(B
⊥)0) (11.6.5)
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is an isomorphism of (one-dimensional) Hermitian spaces. If we setUℓ := HomFℓ
(Tℓ(A0)

0, Tℓ(B
⊥)0)

and U′
ℓ := HomFℓ

(Tℓ(A
′
0)

0, Tℓ(B
′⊥)0), there is an isomorphism of Fℓ vector spaces

HomFℓ
(Tℓ(B

′⊥)0, Tℓ(B
⊥)0) HomFℓ

(Uℓ,U
′
ℓ)

ϕ⊥ (f 7→ (ϕ⊥ ◦ f ◦ ϕ−1
0 )).

(11.6.6)

An element ϕ⊥ on the left satisfies ϕ⊥†ϕ⊥ = b if and only if ϕ⊥ corresponds to an isomorphism

of Hermitian spaces Uℓ → U′
ℓ. We have Vℓ ∼= W′

ℓ ⊕U′
ℓ
∼= Wℓ ⊕Uℓ (orthogonal direct sum) as

Hermitian spaces, for all ℓ ̸= p. Hence U′
ℓ
∼= Uℓ for all ℓ ̸= p (consider the Hermitian space local

invariants (in {±1}) via ε as in Section 2.2).

The preceding discussion produces an element ϕ⊥ℓ ∈ Hom0
F (B

′⊥,B⊥)⊗Q Qℓ satisfying ϕ
⊥†
ℓ ϕ⊥ℓ =

b for all primes ℓ ̸= p. Since p is split in OF , such an element exists for ℓ = p as well (i.e.

NFp/Qp
(F×

p ) = Q×
p ). Since b > 0, such an element also exists if Qℓ is replaced by R (positivity of

the Rosati involution). By the Hasse principle for Hermitian spaces (or Hasse norm theorem), we

obtain ϕ⊥ ∈ Hom0
F (B

′⊥,B⊥) satisfying ϕ⊥†ϕ⊥ = b. □

For the rest of Section 11, we fix framing data as in Lemma 11.6.2 if p is split, so that Θ(k) is

surjective.

For the supersingular cases, we use the following lifting result to prove surjectivity of Θ̃ by

bootstrapping from surjectivity on k points (as in the proof of [RZ96, Theorem 6.30]). Recall that

a p-divisible group X over a base scheme S is said to be isoclinic if for any geometric point s of S,

the isocrystal of Xs has constant slope independent of s.

Proposition 11.6.3 (Isoclinic lifting theorem). For any integer h, there exists an integer c with

the following property: Let R be a reduced Noetherian Henselian local ring with residue field κ,

and assume that R is an Fp-algebra. Let X and Y be isoclinic p-divisible groups of heights ≤
h over SpecR. For any homomorphism f : Xκ → Yκ, the homomorphism pcf lifts to a unique

homomorphism X → Y .

Proof. See [OZ02, Corollary 3.4]. For the statement when R = κ[[t]] for an algebraically closed field κ

(which is enough for Lemma 11.6.4), see also [Kat79, Theorem 2.7.1] combined with Grothendieck–

Messing theory as in [RZ96, pg. 295]. □

Lemma 11.6.4. The uniformization map Θ is a surjection37 of formal algebraic stacks.

Proof. The reduced substack Z̆(T )red ⊆ Z̆(T ) is Jacobson, Deligne–Mumford, with quasi-compact

diagonal, and finite type over Spec k. This implies that the closed points of Z̆(T )red are dense in

every closed subset (e.g. [SProject, Lemma 06G2]; the finite type points are the same as closed

points here), each closed point is the image of a map Spec k → Z̆(T )red, and every such map has

image being a closed point.

Case p is nonsplit: We already know that Θ is surjective on k points. It is thus enough to prove

the following claim: suppose α′ ⇝ α is an immediate specialization of points in |Z̆(T )| (in the sense

of [SProject, Definition 02I9], i.e. α is a points of “codimension one” in the closure of α′). If α is in

37We say a morphism of formal algebraic stacks is a surjection if it is surjective on underlying topological spaces.
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the image of Θ, we claim that α′ is also in the image of Θ. (This specialization process eventually

terminates with a k point.)

Let κ an algebraically closed field with a morphism Specκ[[t]] → Z̆(T ), which sends the closed

point to α and the open point to α′.38 Enlarging κ if necessary, we may lift α to a point (α, ϕ0, ϕ) ∈
Z̆(T )framed. The task is to lift the framing pair (ϕ0, ϕ) to Spec k[[t]], which is then a framing pair

for α′. Serre–Tate (and formal GAGA as in [EGAIII1, Théorème 5.4.1]) implies that it is enough

to lift the induced quasi-isogenies of p-divisible groups to Spec k[[t]]. This is possible by the isoclinic

lifting theorem (Proposition 11.6.3).

Case p is split: By Lemma 5.4.2 (finiteness of local special cycles), and since the groupoid

[I ′(Q)\Jp(T )] has finite automorphism groups and finitely many isomorphism classes (Section 11.5;

we assumed rank(T ) ≥ n− 1 for p split), we know there is a surjection from finitely many copies of

Spec k to [I ′(Q)\Z̆(T )framed]. Since Θ is surjective on k-points, the previous considerations show

that |Z̆(T )red| is a finite discrete topological space, and that Θ is a surjection. □

Lemma 11.6.5. The map Θ̃ is proper on underlying reduced substacks, and the reduced substack

[I ′(Q)\Z̆(T )framed]red is proper over Spec k.

Proof. Since the reduced substack Z̆(T )red is separated over Spec k, it is enough to check that

[I ′(Q)\Z̆(T )framed]red is proper over Spec k, by [SProject, Lemma 0CPT].

We already saw that Θ̃ is a monomorphism, hence separated. Since Z̆(T )red is separated, we see

that [I ′(Q)\Z̆(T )framed]red is also separated over Spec k.

We use the description of Z̆(T )framed in (11.4.2). We know that every irreducible component of

the reduced subscheme N ′
red is projective over k (Section 5.1), hence the same holds for Z ′(xp) for

any x ∈Wm (and Z ′(xp) is discrete). Hence each irreducible component of Z̆(T )framed,red has closed

image in Z̆(T )red. Since Θ is surjective, we conclude that finitely many irreducible components

of Z̆(T )framed,red cover Z̆(T )red (by Noetherianity of the latter). Since Θ̃ is a monomorphism,

hence injective on underlying topological spaces, we conclude that those finitely many irreducible

components cover [I ′(Q)\Z̆(T )framed]red as well. Then [I ′(Q)\Z̆(T )framed]red is proper over Spec k

by [SProject, Lemma 0CQK]. □

Proposition 11.6.6. The map Θ̃ is an isomorphism.

Proof. We have seen that the morphism Θ̃ of locally Noetherian formal algebraic stacks is formally

étale, surjective, and a monomorphism. The underlying map of reduced substacks is proper. These

properties imply that Θ̃ is an isomorphism. □

11.7. Global and local. The next lemma (purely linear-algebraic) helps us use uniformization to

deduce properties of local special cycles via “approximating” them by global special cycles.

Lemma 11.7.1. Let L ⊆Wp be any non-degenerate Hermitian OFp-lattice (of any rank). There

exists an element gp ∈ U(Wp) such that gp(L) admits a basis consisting of elements in W.

38The following procedure produces such a morphism Specκ[[t]] → Z̆(T ). First, take an étale cover of Z̆(T )red by

a scheme U and lift x′ ⇝ x to an immediate specialization y′ ⇝ y on U . Write Z for the normalization of the integral

closed subscheme of U with generic point y′. Note the normalization map is finite, and lift y′ ⇝ y to an immediate

specialization z′ ⇝ z on Z. Completion of the local ring at z on Z is a power series ring over a field.
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Proof. Set W = L ⊗OFp
Fp. It is enough to produce gp ∈ U(Wp) such that gp(W ) admits an

Fp-basis consisting of elements in W (since this implies that every full rank OFp-lattice in gp(W )

admits a basis consisting of elements of W).

Select any Fp-basis e = [e1, . . . , ed] forW . Since W is dense in Wp, we may select ẽ = [ẽ1, . . . , ẽd]

such that each ∥ẽi − ei∥p ≪ 1 for all i (meaning ẽi − ei lies in a small neighborhood of 0 for the

p-adic topology on Wp). Set W̃ := spanFp
{ẽ1, . . . , ẽd}. When each ẽi− ei lies in a sufficiently small

neighborhood of 0, there exists a (non-canonical) isomorphism of Hermitian spaces W ∼= W̃ (the

associated Gram matrices (e, e) and (ẽ, ẽ) can be made arbitrarily p-adically close; hence the local

invariants ε((e, e)) and ε((ẽ, ẽ)) will agree). By Witt’s theorem for Hermitian spaces, any isometry

W → W̃ extends to an isometry gp : Wp →Wp. This element gp ∈ U(Wp) satisfies the conditions

in the lemma statement. □

Corollary 11.7.2. Consider any tuple xp ∈ Wm
p which spans a non-degenerate Hermitian OFp-

lattice, and write m♭ for its rank. Assume m♭ = n− 1 if p is split.

For some T ∈ Hermm(Q) (still assuming rankT ≥ n− 1 if p is split), and some j ∈ Jp(T ) with

associated w ∈W, there exists gp ∈ U(Wp) inducing an automorphism N → N which takes Z(xp)
isomorphically to Z(wp). In particular, there is an induced morphism

Z(xp)
∼−→ Z(wp)

Θj−−→ Z̆(T ). (11.7.1)

which is representable by schemes, separated, and étale. If m♭ ≥ n − 1 (equivalently, rank(T ) ≥
n− 1), this map is finite étale.

Proof. By Lemma 11.7.1, we may pick an element gp ∈ U(Wp) so that spanOFp
(gp · xp) admits

an OFp-basis w♭ of elements in W. Extend w♭ to any m-tuple w ∈ Wm, and set T := (w,w).

Recall that U(Wp) acts on N , and that gp gives an automorphism of N sending Z(xp) 7→ Z(wp)

(Section 5.3). By uniformization (Proposition 11.6.6), any j ∈ Jp(T ) whose associated tuple is w

will satisfy the conditions of the lemma. Replacing w with a · w for suitable a ∈ Z with p ∤ a
ensures Z ′(wp) ̸= ∅. Then such j ∈ Jp(T ) will exist. In Section 11.5, we saw that Θj is finite étale

if rank(T ) ≥ n− 1. □

If p ̸= 2 and in signature (n − 1, 1), the quasi-compactness proved in the next lemma is also

[LZ22a, Lemma 2.9.] (inert), proved via Bruhat–Tits stratification. In the exotic smooth ramified

case, quasi-compactness should be implicit in [LL22], via Bruhat–Tits stratification as discussed in

[LL22, §2.3]. In the case when xp spans a lattice of rank n and signature (n − 1, 1), see [LZ22a,

Lemma 5.1.1] (inert, p ̸= 2) and [LL22, Remark 2.26] (ramified, exotic smooth).

Lemma 11.7.3. Let xp ∈Wd
p be any tuple which spans a non-degenerate Hermitian OFp-lattice of

rank ≥ n− 1. Then the local special cycle Z(xp) is quasi-compact and the structure map Z(xp)→
Spf OF̆p

is adic and proper.

Proof. By Corollary 11.7.2, we obtain T ∈ Hermm(Q) and a map Z(xp) → Z̆(T ) which is rep-

resentable by schemes, and finite étale. In particular, Z(xp) is quasi-compact because the (base-

changed) global special cycle Z̆(T ) is quasi-compact.
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If p is nonsplit, then Z(T )k →Mk automatically factors through the supersingular locus (Corol-

lary 4.7.3), so we have Z̆(T ) = Z(T )Spf OF̆p
. This formula holds for p split as well, by definition.

Hence Z̆(T ) → Spf OF̆p
is adic39 and proper (Lemma 4.7.5), so Z(xp) → Spf OF̆p

is adic and

proper. □

We write Z̆(T )H for the flat40 part (“horizontal”) of Z̆(T ), i.e. the largest closed substack which

is flat over Spf OF̆p
. We use similar notation Z(xp)H for the flat part of the local special cycle

Z(xp).
Formation of “flat part” is flat local on the source. The quotient map Θ (11.4.1) is representable

by schemes and étale, hence flat. So the uniformization result (Proposition 11.6.6) implies that

there is an induced uniformization morphism

Θ:
∐

x∈Wm

(x,x)=T

Z ′(xp)H ×Z ′(xp)→ Z̆(T )H (11.7.3)

where Z ′(xp)H is the flat part of Z ′(xp). The action of I ′(Q) must preserve the flat part, so

generalities on stack quotients imply that Θ induces an isomorphism

Θ̃:

[
I ′(Q)\

( ∐
x∈Wm

(x,x)=T

Z ′(xp)H ×Z ′(xp)

)]
∼−→ Z̆(T )H (11.7.4)

of formal algebraic stacks. For each j ∈ Jp(T ), the map Θj : Z(xp) → Z̆(T ) induces a map

Θj : Z(xp)H → Z̆(T )H (reusing the notation Θj). Since Θj is flat and since formation of flat part

39We say a morphism of formal algebraic stacks is adic if the morphism is representable by algebraic stacks in the

sense of [Eme20, §3].
40Flatness for morphisms of locally Noetherian formal algebraic stacks was defined in [Eme20, Definition 8.42].

We are using a different definition, since the definition of loc. cit. does not recover the usual notion of flatness for

morphims of schemes (in the situation of [Eme20, Lemma 8.41(1)], consider X = Y = Spec k for a field k and any

non-flat morphism of Noetherian affine k-schemes U → V ).

We define flatness in the style of [SProject, Section 06FL] (there for algebraic stacks), which recovers usual flatness

for morphisms of locally Noetherian formal schemes. Let f : X → Y be a morphism of locally Noetherian formal

algebraic spaces. Consider commutative diagrams

U V

X Y

h

a b

f

(11.7.2)

where U and V are locally Noetherian formal schemes and the vertical arrows are representable by schemes, flat, and

locally of finite presentation. We say that f is flat if it satisfies either of the following equivalent conditions.

(1) For any diagram as above such that in addition U → X ×Y V is flat, the morphism h is flat.

(2) For some diagram as above with a : U → X surjective, the morphism h is flat.

Next, consider a morphism f : X → Y of locally Noetherian formal algebraic stacks. Consider diagrams as above,

but assume instead that U and V are locally Noetherian formal algebraic spaces, and that the arrows a and b are

representable by algebraic spaces, flat, and locally of finite presentation. We say that f is flat if either of the equivalent

conditions (1) and (2) as above are satisfied. If the morphism f is adic, then this agrees with the notion of flatness

for adic morphisms as in [Eme20, Definition 3.11].
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is flat local on the source, the “horizontal” Θj arises from the original Θj by base-change along

Z̆(T )H → Z̆(T ).
In the case p ̸= 2 and for signature (n−1, 1) and m♭ = n−1, the next lemma is a consequence of

[LZ22a, Theorem 4.2.1] (decomposition into quasi-canonical lifting cycles via Breuil modules) and

is explained in [LL22, Lemma 2.49(1)] (also via decomposition into quasi-canonical lifying cycles).

In the case p ̸= 2, signature (n− 1, 1), and m♭ = n, see again [LZ22a, Lemma 5.1.1] (inert, p ̸= 2)

and [LL22, Remark 2.26] (ramified, exotic smooth).

Lemma 11.7.4. Let xp ∈ Wm
p be a tuple which spans a non-degenerate Hermitian OFp-lattice,

whose rank we denote m♭. Assume m♭ = n − 1 if F/Qp is split. Form the horizontal part Z(x)H
of Z(x).

(1) If Z(x)H is nonempty, then it is equidimensional of dimension (n− r)r + 1−m♭r.

(2) If m♭ = n − 1 and the signature is (n − r, r) = (n − 1, 1), then the structure morphism

Z(xp)H → Spf OF̆p
is a finite adic morphism of Noetherian formal schemes. The associated

finite scheme over SpecOF̆p
has reduced generic fiber.

(3) If m♭ = n and the signature is (n− r, r) = (n− 1, 1), then Z(xp)H = ∅.

Proof.

(1) By Corollary 11.7.2, we can find T ∈ Hermm(Q) (with rank(T ) ≥ n − 1 if p is split) and

a morphism Z(xp) → Z̆(T ) which is representable by schemes and étale. As formation of

flat part is flat local on the source, we obtain a morphism Z(x)H → Z̆(T )H which is still

representable by schemes and étale. The claim now follows from the corresponding global

result for Z(T )H (Lemma 3.5.5). Note that we may assume K ′
f is a small level (deepen

the level away from p) to reduce to the case when Z̆(T )H is a formal scheme.

(2) In this case, the map Z(xp)H → Z̆(T )H from part (1) is finite étale. We know that

Z̆(T )H → Spf OF̆p
(with T as in the proof of loc. cit.) is proper and quasi-finite (Lemma

4.7.4). Since proper and quasi-finite implies finite (for morphisms of schemes) and since

Z̆(xp)→ Spf OF̆p
is adic, (already proved in Lemma 11.7.3) i.e. representable by schemes,

the claimed finiteness holds. The claim on reducedness in the generic fiber follows because

Z(T )H → SpecOF is étale in the generic fiber (Lemma 3.5.5). We are passing from finite

relative schemes over Spf OF̆p
and SpecOF̆p

as in Section B.3 (i.e. Spf R 7→ SpecR).

(3) If m♭ = n, then Z̆(T )H = ∅ (by Lemma 3.5.5), so Z(xp)H = ∅ by existence of the map

Z(xp)H → Z̆(T )H . □

In the case of p ̸= 2, signature (n− 1, 1), and m♭ = n− 1, the following lemma is [LZ22a, §2.9]
(there proved differently, using their quasi-compactness result via Bruhat–Tits stratification).

Lemma 11.7.5 (Horizontal and vertical decomposition). Let xp ∈ Wm
p be a tuple which span a

non-degenerate Hermitian OFp-lattice of rank m♭. Assume m♭ = n− 1 if F/Qp is split. For e≫ 0,

we have a scheme-theoretic union decomposition

Z(xp) = Z(xp)H ∪ Z(xp)V . (11.7.5)

where Z(xp)V := Z(xp)Spf OF̆p
/peOF̆p

.
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Proof. If I denotes the ideal sheaf of Z(xp)H as a closed subscheme of Z(xp), it is enough to

show that pe annihilates I for e ≫ 0. By Corollary 11.7.2, we can find T ∈ Hermm(Q) (with

rank(T ) ≥ n− 1 if p is split) and a morphism f : Z(xp)→ Z̆(T ) which is representable by schemes

and étale. We may assume K ′
f is small (deepen the level away from p) so that Z̆(T ) is a formal

scheme.

If I denotes the ideal sheaf of the flat part Z̆(T )H ⊆ Z̆(T ), then f∗I → I is surjective (by

flatness of f , i.e. formation of flat part is flat local on the source). If pe annihilates I , then pe

also annihilates I. We know that I consists (locally) of p-power torsion elements in the structure

sheaf. Since Z̆(T ) is quasi-compact, we know that I is annihilated by pe for e≫ 0. □

For the rest of Section 11, we restrict to signature (n− 1, 1) in all cases.

Lemma 11.7.6.

(1) If p is split, then Z̆(T )→ Spf OF̆p
is proper and quasi-finite and we have LZ(T )V ,p = 0.

(2) Assume n = 2 and rank(T ) ≥ 1. Then Z̆(T ) → Spf OF̆p
is proper and quasi-finite. If

rank(T ) = 1, then we have LZ(T )V ,p = 0.

Proof. (1) Recall our running assumption that rank(T ) ≥ n − 1 if p is split. Recall also Z̆(T ) :=
Z(T )Spf OF̆p

in the split case, so the map Z̆(T )→ Spf OF̆p
is representable by algebraic stacks and

locally of finite type. This map is proper on reduced substacks by uniformization (Lemma 11.6.5

and Proposition 11.6.6), hence it is proper.

It remains to check that Z̆(T ) → Spf OF̆p
is quasi-finite in the sense of [SProject, Definition

0G2M]. It is enough to check that Z̆(T )red → Spec k is quasi-finite. This follows from the uni-

formization isomorphism, since Z̆(T )red may be covered by finitely many copies of Spec k (combine

uniformization with the analogous result for local special cycles, which is Lemma 5.4.2; since we

assume rank(T ) ≥ n− 1 when p is split, the groupoid [I ′(Q)\Jp(T )] has finitely many isomorphism

classes, as discussed in Section 11.5).

The derived vertical special cycle class LZ(T )V ,p ∈ grmMK ′
0(Z(T )Fp)Q was defined in Section 4.6.

If m ≥ n then Z(T ) is empty. If m = n − 1, then grmMK ′
0(Z(T )Fp)Q = 0 because Z(T )Fp has

dimension 0 (andM has dimension n).

(2) This may be proved as in part (1). We may assume p is nonsplit. We have Z̆(T ) = Z(T )Spf OF̆p

(Lemma 4.7.3). Then use quasi-compactness of local special cycles (Lemma 11.7.3), uniformization,

and discreteness of Nred (Section 5.4). Suppose rank(T ) = 1. First consider the case m = 1. Then
LZ(T )V ,p ∈ gr1MK ′

0(Z(T )Fp)Q = 0 because Z(T )Fp has dimension 0 (and M has dimension 2).

If m = 2, then LZ(ti)V ,p = 0 for any nonzero diagonal entry ti of T by the preceding argument,

so LZ(T )V ,p = 0 by construction (defined in Section 4.6 as the projection of a product against
LZ(ti)V ,p = 0 for some i). □

Lemma 11.7.7. Assume p is nonsplit. Assume that K ′
f is a small level, so that M is a scheme.

Fix any j ∈ Jp(T ) and consider the map

Z(xp)
Θj−−→ Z̆(T )→ Z(T ). (11.7.6)

The class LZ(T ) ∈ K ′
0(Z(T ))Q pulls back to the class LZ(xp) ∈ K ′

0(Z(xp))Q.
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Proof. The maps Θj : Z(xp)→ Z̆(T ) and Z̆(T )→ Z(T ) are flat maps of locally Noetherian formal

schemes, so we may take the non-derived pullback. The lemma may be proved using the fact that

the commutative diagrams

Z̆(T )framed M̆framed

Z(T ) M

⌟
Z̆(ti)framed M̆framed

Z(ti) M

⌟ (11.7.7)

are 2-Cartesian (where the ti are the diagonal entries of T ), and the fact that the tautological

bundle E onM pulls back to the tautological bundle E on N . □

Corollary 11.7.8. Assume p is nonsplit. For any xp ∈Wm
p , we have LZ(xp) ∈ FmNK ′

0(Z(xp))Q.

Proof. By Corollary 11.7.2, we can find T ∈ Hermm(Q) (with rank(T ) ≥ n − 1 if p is split) and a

morphism Z(xp) → Z̆(T ) which is representable by schemes and étale. We can deepen the level

K ′
f away from p to assume Z̆(T ) is a formal scheme. Since LZ(T ) ∈ FmNK ′

0(Z(T ))Q, the corollary

follows from Lemma 11.7.7. □

We previously defined derived vertical (global) special cycles LZ(T )V ,p ∈ grmMK ′
0(Z(T )Fp)Q

(Section 4.6). In the next lemma, we write Z(T )(p) := Z(T ) ×SpecZ SpecZ(p). We also write

Z(T )V ,p := Z(T )×SpecZ SpecZ/peZ and Z(xp)V ,p := Z(xp)×Spf OF̆p
SpecOF̆p

/peOF̆p
for an under-

stood integer e≫ 0. We also set Z̆(T )V := Z̆(T )×Spf OF̆p
SpecOF̆p

/peOF̆p
.

Lemma 11.7.9. Fix any j ∈ Jp(T ). Write x ∈Wm for the associated m-tuple. Fix any e ≫ 0

such that there are scheme-theoretic union decompositions

Z(T )(p) = Z(T )(p),H ∪ Z(T )V ,p Z(xp) = Z(xp)H ∪ Z(xp)V ,p (11.7.8)

(“horizontal and vertical”). Pullback along the map

Z(xp)V
Θj−−→ Z̆(T )V → Z(T )V ,p (11.7.9)

sends LZ(T )V ,p ∈ grmMK ′
0(Z(T )V ,p)Q to LZ(xp)V ∈ grmNK

′
0(Z(xp)V )Q.

Proof. If p is split, the derived vertical special cycles (global and local) are zero (Lemma 11.7.6

(global) and Section 5.5 (local)) and the lemma is trivial. We remind the reader of our running

assumption that rank(T ) ≥ n− 1 if p is split.

We thus assume that p is nonsplit. By the local and global linear invariance results (Section 5.5

and (4.6.11)), it is enough to check the case where T = diag(0, T ♭) where detT ♭ ̸= 0.

First consider the case where T is nonsingular, i.e. T = T ♭. If K ′
f is a small level, the lemma

follows from Lemma 11.7.7, since the projections grm
♭

MK ′
0(Z(T ♭))Q → grm

♭

MK ′
0(Z(T ♭)V ,p)Q and

grm
♭

N K ′
0(Z(xp))Q → grm

♭

N K ′
0(Z(xp)V )Q are given by (non-derived) pullbacks of coherent sheaves,

see Lemma A.1.5 (Deligne–Mumford stacks) and [Zha21, Lemma B.1] (locally Noetherian formal

schemes). Note that the codimension graded pieces grm are preserved, by étale-ness of Θj . In

general, we may reduce to the case where K ′
f is a small level by compatibility of LZ(T ♭)V ,p with

(finite étale) pullback for varying levels (Section 4.6).
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Next, consider the case where T is possibly singular with T = diag(0, T ♭). If K ′
f is a small level,

this follows as in the proof of Lemma 11.7.7. That is, the class LZ(T )V ,p := (E∨)m−rank(T ) ·Z(T ♭)V ,p
pulls back to LZ(xp)V := (E∨)m−rank(T ) · Z(x♭p)V (use the result for T ♭ just proved). In general,

we may reduce to the case where K ′
f is a small level (deepen level away from p) by compatibility

of LZ(T ♭)V ,p with (finite étale) pullback for varying levels (Section 4.6). □

11.8. Local intersection numbers: vertical. The main purpose of this section is to reduce

“global vertical intersection numbers” to “local vertical intersection numbers” (see end of this

section). We continue to assume signature (n− 1, 1).

Consider T ′ ∈ Hermm(Qp) (with Fp-coefficients) with rank(T ′) = n − 1, and either m = n − 1

or m = n. For any tuple xp ∈Wm
p with Gram matrix T ′, we define the local vertical intersection

number

IntV ,p(T
′) :=

2[F̆p : Q̆p]
−1 degk(

LZ(xp)V · E∨) log p if m = n− 1

2[F̆p : Q̆p]
−1 degk(

LZ(xp)V ) log p if m = n
(11.8.1)

Here, E∨ stands for the class [ON ]− [E ] ∈ K ′
0(N ). If no such xp exists, we set IntV ,p(T

′) := 0. The

definition of IntV ,p(T
′) does not depend on the choice of xp (by the action of U(Wp) on N (n−1, 1),

Section 5.3). The factor 2[F̆p : Q̆p]
−1 will account for total degree of SpecOFp → SpecZp on residue

fields (e.g. we need to account for both primes in OF over p in the split case). By local linear

invariance (Section 5.5), we have

IntV ,p(T
′) = IntV ,p(

tγT ′γ) (11.8.2)

for any γ ∈ GLm(OFp).

Consider any T ∈ Hermm(Q) (with F -coefficients) with rank(T ) = n− 1, and either m = n− 1

or m = n. Pick any set of representatives J ⊆ Jp(T ) for the isomorphism classes of the groupoid

[I ′(Q)\Jp(T )]. By Lemma 11.7.9, we have

IntV ,p,global(T ) := degFp
(LZ(T )V ,p · (E∨)n−m) log p (11.8.3)

= IntV ,p(T )
∑
j∈J

1

|Aut(j)|
(11.8.4)

= IntV ,p(T )
[KL0,f : K0,f ]

|O×
F |/hF

· deg

[
I1(Q)\

( ∐
x∈Wm

(x,x)=T

U(W⊥
p )/K1,L⊥

p
×Z(xp)

)]
.

For later use in Remark 22.1.2, consider T ∈ Hermn(Q) (with F -coefficients) with detT ̸= 0.

We consider the local intersection number

Intp(T ) := 2[F̆p : Q̆p]
−1 degk(

LZ(xp)) log p (11.8.5)

where xp ∈ Wn
p is any n-tuple with Gram matrix T (since rankWp = n − 1 when p is split,

set Intp(T ) := 0 in this case). Note LZ(xp)V = LZ(xp) by Lemmas 11.7.4 and 11.7.3 (under the
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dévissage pushforward identification K ′
0(Z(xp)k)

∼−→ K ′
0(Z(xp))). By Lemma 11.7.9, we have

Intp,global(T ) := degFp
(LZ(T )V ,p) log p (11.8.6)

= Intp(T )
[KL0,f : K0,f ]

|O×
F |/hF

· deg

[
I1(Q)\

( ∐
x∈Wn

(x,x)=T

Z(xp)

)]
. (11.8.7)

11.9. Local intersection numbers: horizontal. The main purpose of this section is to reduce

“global horizontal intersection numbers” to “local horizontal intersection numbers” (see end of this

section). We continue to assume signature (n− 1, 1). In Section 11.9, we require p ̸= 2 if p is inert

(because we required this for our discussion of quasi-canonical lifting cycles, Section 7.3).

Consider T ′ ∈ Hermm(Qp) (with Fp-coefficients) with rank(T ′) = n − 1, and either m = n − 1

or m = n. Select any xp ∈Wm
p with Gram matrix T ′, and set L♭p := spanOFp

(xp). We define the

local horizontal intersection number

IntH ,p(T
′) :=

∑
L♭
p⊆M♭

p⊆M♭∗
p

t(M♭
p)≤1

IntH ,p(M
♭
p)

◦ (11.9.1)

where the sum runs over lattices M ♭
p ⊆ L♭p ⊗OFp

Fp, where

IntH ,p(M
♭
p)

◦ := 2 · degZ(M ♭
p)

◦ · δtau(val′(M ♭
p)) (11.9.2)

with val′(M ♭
p) := ⌊val(M ♭

p)⌋ and with δtau(−) the “local change of tautological height” as defined

in (7.2.7). Here Z(M ♭
p)

◦ ⊆ N (n − 1, 1) is the quasi-canonical lifting cycle associated with M ♭
p

(Section 7.3). The local horizontal intersection number should be compared with the decomposition

of horizontal local special cycles into quasi-canonical lifting cycles (Section 7.3). The notation

degZ(M ♭
p)

◦ means the degree of the finite flat adic morphism Z(M ♭
p)

◦ → Spf OF̆p
. If no such xp

exists, we set IntH ,p(T
′) := 0.

This definition of IntH ,p(T
′) does not depend on the choice of xp (again by the action of U(Wp)

on N Section 5.3 and Witt’s theorem). The formula for degZ(M ♭
p)

◦ (combine (7.2.1) and (7.3.1))

shows IntH ,p(M
♭
p)

◦ ∈ Z. The extra factor of 2 in (11.9.2) will account for the fact that Spf(OF ⊗Z

Z̆p)→ Spf Z̆p has degree 2.

In the above situation, we also set

degH ,p(T
′) := degZ(xp)H (11.9.3)

where the right-hand side means the degree of the finite flat adic morphism Z(xp)H → Spf OF̆p
.

If no such xp exists, we set degH ,p(T
′) = 0. Again, the definition of degH ,p(T

′) does not depend

on the choice of xp.

Suppose T ∈ Hermm(Q) (with F -coefficients) with rank(T ) = n − 1, and either m = n − 1 or

m = n. Then (in the notation of Sections 4.3 and 4.1) we have

d̂eg(Ê∨|Z(T )H ) = d̂eg(Ω̂∨
0 |Z(T )H ) + d̂eg(Ê ∨|Z(T )H ). (11.9.4)

We have

d̂eg(Ω̂∨
0 |Z(T )H ) = degZZ(T )H · (−hCM

Fal −
1

4
log |∆|). (11.9.5)
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where degZZ(T )H means the degree of Z(T )H ×SpecZ SpecQ → SpecQ (stacky degrees as in

(A.1.10) and surrounding discussion).

Pick any set of representatives J ⊆ Jp(T ) for the isomorphism classes of the groupoid [I ′(Q)\Jp(T )].
Using the finite étale maps Θj : Z(xp)H → Z̆(T )H for j ∈ Jp(T ) (Section 11.5 and (11.7.3)) which

cover Z̆(T )H as j ranges over J , we find

degZZ(T )H = degH ,p(T )
∑

j∈Jp(T )

1

|Aut(j)|
(11.9.6)

= degH ,p(T )
[KL0,f : K0,f ]

|O×
F |/hF

· deg

[
I1(Q)\

( ∐
x∈Wm

(x,x)=T

U(W⊥
p )/K1,L⊥

p
×Z(xp)

)]
.

Combining the following: (1) the finite étale maps Θj : Z(xp)H → Z̆(T )H for j ∈ Jp(T ) (Section
11.5 and (11.7.3)) which cover Z̆(T )H as j ranges over J (2) Proposition 7.3.1 (decomposition of

horizontal local special cycles into quasi-canonical liftings) and discussion surrounding (7.3.2), and

(3) Corollary 10.2.2 (decomposition of global height into local “change of heights” for p-divisible

groups), we find

IntH ,p,global(T ) := d̂eg(Ê ∨|Z(T )H )− (degZZ(T )H ) · hCM
tau mod

∑
ℓ ̸=p

Q · log ℓ (11.9.7)

= IntH ,p(T )
∑

j∈Jp(T )

1

|Aut(j)|

= IntH ,p(T )
[KL0,f : K0,f ]

|O×
F |/hF

· deg

[
I1(Q)\

( ∐
x∈Wm

(x,x)=T

U(W⊥
p )/K1,L⊥

p
×Z(xp)

)]

with hCM
tau and hCM

Ê∨ as in (4.3.6). The notation “mod
∑

ℓ̸=pQ · log ℓ” means that equality holds as

elements of the (additive) quotient R/(
∑

ℓ ̸=pQ · log ℓ). Note IntH ,p,global(T ) ∈ Q · log p. To apply

Corollary 10.2.2, we first consider the case of small level K ′
f so that Z(T )H is a scheme. This

immediately implies the case of general (stacky) level, by compatibility of arithmetic degree with

finite étale covers, see Section 4.1. We have

d̂eg(Ê∨|Z(T )H )− (degZZ(T )H ) · hCM
Ê∨ =

∑
ℓ

IntH ,ℓ,global(T ) (11.9.8)

where the sum ranges over all primes ℓ, with all but finitely many terms equal to 0. The preceding

expression should be understood modulo Q · log ℓ for those primes ℓ for which L⊗Z Zℓ is not self-
dual. If L is not self-dual, we also quotient by Q · log ℓ for primes ℓ | ∆. We also quotient by Q · log 2
unless 2 is split in OF .

We define total “intersection numbers”

Intp(T ) := IntH ,p(T ) + IntV ,p(T ) Intp,global(T ) := IntH ,p,global(T ) + IntV ,p,global(T ) (11.9.9)

(local and global) at p. These will feature in our main non-Archimedean local theorems (Section

18) and the proof of our main global theorem (Theorem 22.1.1) respectively.
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For readers interested in Faltings heights, we record the relation

d̂eg(ω̂|Z(T )H )− (degZZ(T )H ) · n · hCM
Fal = −2

∑
ℓ

IntH ,ℓ,global(T ) (11.9.10)

where ω̂ is the metrized Hodge determinant bundle (Section 4.3), the sum again runs over all primes

ℓ, and where IntH ,ℓ,global(T ) is the same quantity defined above. This follows by the same argument

as above, using Corollary 10.2.2. The remarks following (11.9.8) (about quotienting by Q · log ℓ for
some primes ℓ) apply here verbatim.

12. Archimedean

We explain complex uniformization for special cycles and Green currents on M. The only

new part of Section 12 is our treatment of Green currents for singular T in Section 12.4, when

rank(T ) = n−1. The remaining material should be fairly standard, e.g. [KR14, §3] (uniformization

of special cycles), [BHKRY20, §2] (including discussion of metrized tautological bundle), [Liu11,

§4B] (Green currents via uniformization), etc.. Strictly speaking, however, the references [KR14;

BHKRY20] restrict to principal polarizations. We will need non-principal polarizations (this slightly

affects how we normalize the metric on the tautological bundle), so we explain the setup.

With notation as explained at the beginning of Part 4, we also assume L has signature (n−1, 1).

For technical convenience, we assume the implicit level K ′
f is small so thatM is a scheme (except

at the very end of Section 12.4). Fix one of the two embeddings F → C, writeMC :=M×SpecOF

SpecC, and let Man
C be the analytification (outside of Section 12, we often abuse notation and

drop the superscript an). This is a complex manifold of dimension n − 1. Given any Hermitian

matrix T ∈ Hermm(Q) (with F -coefficients) with associated special cycle Z(T ) → M, we use

similar notation Z(T )C and Z(T )anC . Since Z(T )C → SpecC is smooth (Lemma 3.5.5), we know

that Z(T )anC is also a complex manifold.

We view VR as a complex vector space via the identification F ⊗Q R ∼= C (induced by the choice

of F → C). We use notation from Section 8 on the Hermitian symmetric space D and its local

special cycles D(x) for tuples x ∈ V m
R , etc..

We set VC := V ⊗Q C and write VC = V +
C ⊕ V

−
C where the F -action on V +

C (resp. V −
C is F -

linear (resp. σ-linear) with respect to the chosen map F → C. We use similar notation for other

F ⊗Q C-modules.

12.1. Local special cycles away from ∞. Given an m-tuple xf = [x1, . . . , xm] ∈ (V ⊗Q Af )m,
we consider an “away-from-∞” local special cycle

D′(xf ) := {(g0, g) ∈ G′(Af )/K ′
f : g−1g0xi ∈ L⊗Z Ẑp for all xi ∈ xf}. (12.1.1)

We view D′(xf ) as a discrete set. We also define the “away-from-∞” local special cycle

D(xf ) := {g ∈ U(V )(Af )/Kf : g−1xi ∈ L⊗Z Ẑp for all xi ∈ xf}. (12.1.2)

The isomorphism G′(Af )/K ′
f → GU(V0)(Af )/K0,f × U(V )(Af )/Kf (∗) induces a bijection

D′(xf )
∼−→ GU(V0)(Af )/K0,f ×D(xf ). (12.1.3)
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12.2. Framing. Fix the isomorphism of Hermitian OF -lattices HomOF
(L0, L) → L sending x 7→

x(1) (with 1 ∈ L0). This is analogous to ηηη from (11.3.2).

Given α = (A0, ι0, λ0, A, ι, λ, η̃0, η̃) ∈Man
C , a framing pair (ϕ0, ϕ) for α consists of isomorphisms

of F vector spaces (singular homology)

ϕ0 : H1(A0,Q)→ V0 ϕ : H1(A,Q)→ V (12.2.1)

such that the induced map

ϕ−1
0 ϕ : HomF (H1(A0,Q), H1(A,Q))→ HomF (V0, V ) = V. (12.2.2)

is an isomorphism of Hermitian spaces.

The Hodge structures of weight −1 on H1(A0,Q) and H1(A,Q) induce a Hodge structure of

weight 0 on V , with an associated complex line F 1VC ⊆ V +
C . After pullback along the projection

isomorphism VR → V +
C of F ⊗QR vector spaces, the line F 1VC ⊆ VR is a negative definite subspace

and hence defines a point z ∈ D. There is a canonical isomorphism of C vector spaces

HomF⊗QR(LieA0, F
0H1(A,Q)+C )

∼= F 1VC. (12.2.3)

We use the fixed choice of
√
∆ to pass between Hermitian/alternating/symmetric forms (Sec-

tion 2.1). This makes H1(A0,Q) and H1(A,Q) into Hermitian F -modules. Using the C-bilinear
extension of the symmetric Q-bilinear trace pairing on H1(A,Q), we obtain an induced C-linear
identification F 0H1(A,Q)+C

∼= HomC((LieA)
−,C).

We equip F 1VC ⊆ VR with the Hermitian metric obtained by restricting the metric on VR. Equip

LieA0 (resp. LieA) with the Hermitian metric as normalized in (4.3.2) (resp. (4.3.3)). Then

(LieA)− ⊆ LieA inherits a Hermitian metric as well. Under the isomorphism

HomC(LieA0,C)⊗HomC((LieA)
−,C) ∼= F 1VC (12.2.4)

induced by (12.2.3), the Hermitian metric on the left is −(16π3eγ)−1 times the Hermitian pairing

on the right.

To the datum (α, ϕ0, ϕ), there are associated elements g0 ∈ GU(V0)/K0,f and g ∈ U(V )(Af )/Kf

given by g0 := ϕ0 ◦ η̃−1
0 and g := (ϕ−1

0 ϕ) ◦ η̃−1 (strictly speaking, ϕ0 and ϕ are tensored with Af
here, with H1(A,Q)⊗Q Af = T (A)0 (rational adèlic Tate module) and similarly for A0).

12.3. Uniformization. For any Hermitian matrix T ∈ Hermm(Q) (with F -coefficients), define the

set

Z(T )anC,framed :=

{
(α, x, ϕ0, ϕ) :

α ∈Man
C with (α, x) ∈ Z(T )anC

and (ϕ0, ϕ) a framing for α

}
. (12.3.1)

There is a canonical injection of sets

Z(T )anC,framed D ×G′(Af )/K ′
f × V m

(α, x, ϕ0, ϕ) (z, (g0, g0g), ϕ ◦ x ◦ ϕ−1
0 )

(12.3.2)

where the Hodge structure z ∈ D and the elements g0 ∈ GU(V0)(Af )/K0,f and g ∈ U(V )(Af )/Kf

are associated to (α, ϕ0, ϕ) as in Section 12.2, and ϕ ◦ x ◦ ϕ−1
0 ∈ HomF (V0, V )m = V m (using the
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isomorphism HomOF
(L0, L) ∼= L fixed above). This induces a bijection

Z(T )anC,framed
∼−→

∐
x∈Vm

(x,x)=T

D(x∞)×D′(xf ). (12.3.3)

There is a forgetful map Z(T )anC,framed → Z(T )anC sending (α, ϕ0, ϕ) 7→ α. This is surjective, by

the Hasse principle (Landherr’s theorem) for Hermitian spaces, and factors through an isomorphism

of complex manifolds

G′(Q)\

( ∐
x∈Vm

(x,x)=T

D(x∞)×D′(xf )

)
∼−→ Z(T )anC,framed (12.3.4)

where G′(Q) acts on Z(T )anC,framed as (α, ϕ0, ϕ) 7→ (α, γ0 ◦ ϕ0, γ ◦ ϕ) for (γ0, γ) ∈ G′(Q) with γ0 and

γ having the same similitude factor. The case T = ∅ (or T = 0) gives complex uniformization of

Man
C,framed.

The isomorphism G′ ∼−→ GU(V0)× U(V ) (see (∗)) induces an isomorphism

G′(Q)\

( ∐
x∈Vm

(x,x)=T

D(x∞)×D′(xf )

)
(12.3.5)

∼−→

(
GU(V0)(Q)\(GU(V0)(Af )/K0,f )

)
×

(
U(V )(Q)\

( ∐
x∈Vm

(x,x)=T

D(x∞)×D(xf )

))

where U(V )(Q) acts on D via the U(V )(R) action, and on U(V )(Af )/Kf by left multiplication.

12.4. Local intersection numbers: Archimedean. Fix T ∈ Hermm(Q) and y ∈ Hermm(R)>0

(i.e. y is any positive definite complex Hermitian matrix). Throughout Section 12.4, we require

m ≥ n− 1 if T is positive definite. If T is singular, we also require m = n and rank(T ) = n− 1.

For such T which are nonsingular, we recall Kudla’s Green current gT,y for Z(T )anC (i.e. the

unitary analogue studied by Liu [Liu11, Proof of Theorem 4.20]), which is defined via uniformization

and star products. For the case of singular T , we propose a definition of gT,y by a “linear invariance”

method, which has some subtleties in the case where T is not GLm(OF )-equivalent to diag(0, T ♭)

for detT ♭ ̸= 0 (“not diagonalizable”). Our treatment of this non-diagonalizable case seems to be

new.

Allowing T singular or not for the moment, define the set

J∞(T ) := GU(V0)(Af )/K0,f ×
∐
x∈Vm

(x,x)=T

D(xf ) (12.4.1)

We will see that the groupoid [G′(Q)\J∞(T )] has with finite stabilizers and finitely many isomor-

phism classes (Lemma 20.4.1). Given j ∈ J∞(T ), we let Aut(j) ⊆ G′(Q) be the stabilizer for the

action of G′(Q) on J∞(T ).

For any γ ∈ GLm(OF ), recall that there is an induced isomorphism Z(T ) ∼−→ Z(tγTγ) (i.e.

send the tuple of special homomorphisms x to x · γ). Similarly, there is an induced isomorphism

Z(T )anC,framed → Z(tγTγ)anC,framed. There is corresponding a bijection J∞(T ) → J∞(tγTγ) (which
127



we denote j 7→ j · γ) sending x 7→ x · γ for x ∈ V m (acting trivially on the remaining data, i.e. view

J∞(T ) as a subset of G′(Af )/K ′
f × V m; note D(xf · γ) = D(xf )). Note Aut(j) = Aut(j · γ).

For each j ∈ J∞(T ), there is a corresponding map

Θj : D →Man
C (12.4.2)

induced by the uniformization morphism D×G′(Af )/K ′
f →Man

C (consider the projection J∞(T )→
G′(Af )/K ′

f ; by uniformization ofMan
C , every element of G′(Af )/K ′

f determines a map D →Man
C ).

For any γ ∈ GLm(OF ), we have Θj = Θj·γ .

If ÊC denotes the metrized tautological bundle onMan
C (Section 4.3) we have Θ∗

j ÊC ∼= Ê , where Ê
is the metrized tautological bundle on D (Section 8.2). By our normalizations, the metric on Θ∗

j ÊC
is (16π3eγ)−1 times the metric on Ê (this normalization constant does not change the Chern form

c1(Ê)).
Consider x ∈ V with (x, x) = T . If T is nonsingular, set

[ξ(x, y)] := [ξ(x · a)] (12.4.3)

for a choice of a ∈ GLm(C) satisfying ata = y, with [ξ(x · a)] the current from Section 8.2. We will

not check that the current [ξ(x, y)] is independent of the choice of a, but the intersection numbers

appearing in our main results will not depend on a (Remark 19.1.5, also the “linear invariance”

from [Liu11, Proposition 4.10] when m = n).

Next, suppose that T is singular, with m = n and rank(T ) = n − 1. First consider the case

when T = diag(0, T ♭) where T ♭ is nonsingular of rank n − 1. If (x, x) = T , we must have x =

[0, x2, . . . , xn] ∈ V n. Set x♭ = [x2, . . . , xn]. There is a decomposition

y =

(
1 c

0 1

)(
y# 0

0 y♭

)(
1 0
tc 1

)
(12.4.4)

for uniquely determined c ∈M1,n−1(C), y# ∈ R>0, and y
♭ ∈ Hermn−1(R)>0. We then set

[ξ(x, y)] := c1(Ê∨) ∧ [ξ(x♭, y♭)]− log(y#) · δD(x). (12.4.5)

For T not necessarily block-diagonal, we define [ξ(x, y)] by the linear invariance requirement

[ξ(x, y)] := [ξ(x · γ−1, γytγ)] mod
∑

p such that
γ ̸∈GLn(OF⊗ZZ(p))

Q · log p · δD(x) (12.4.6)

for all γ ∈ GLn(F ), where
tγ means conjugate transpose, and where “mod” means that the equality

(of currents) holds up to adding an element of the displayed sum.

Equivalently, suppose γ ∈ GLn(F ) is any element such that tγ−1Tγ−1 = diag(0, T ♭) is block

diagonal with T ♭ nonsingular. Write x · γ−1 = [0, x♭1, . . . , x
♭
n−1], set x♭γ = [x♭1, . . . , x

♭
n−1], and

decompose

γytγ =

(
1 c

0 1

)(
y#γ 0

0 y♭γ

)(
1 0
tc 1

)
, (12.4.7)

as above (temporary notation). We then have

[ξ(x, y)] = c1(Ê∨) ∧ [ξ(x♭γ , y
♭
γ)]− log(ỹ#) · δD(x) (12.4.8)
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for a positive real number ỹ# uniquely determined by T and y. Indeed, we require

log(ỹ#) = log(y#γ ) mod
∑

p such that
γ ̸∈GLn(OF⊗ZZ(p))

Q · log p. (12.4.9)

For any fixed prime p, we can always find γ ∈ GLn(OF ⊗Z Z(p)) such that tγ−1Tγ−1 is block

diagonal as above. The preceding expression thus characterizes ỹ# uniquely.41 In all cases above

(T singular or not), note [ξ(x, y)] = [ξ(x · γ−1, γytγ)] for all γ ∈ GLm(OF ) (“linear invariance”).

Definition 12.4.1. For T as above (singular or not), we define the real current

gT,y :=
∑
j∈J

1

|Aut(j)|
Θj,∗[ξ(x, y)] (12.4.11)

onMan
C , where the sum runs over a set J ⊆ J∞(T ) of representatives for the isomorphism classes

of [G′(Q)\J∞(T )], where x ∈ V m is the tuple associated with j ∈ J∞(T ).

In the preceding definition, Θj,∗ denotes pushforward of currents along Θj (for singular T , see

the convergence estimates in Section 8.3). The current gT,y does not depend on the choice of J , by

compatibility of D(x) and [ξ(x)] with the U(V )(R) action on D (Section 8.2). It is also compatible

with pullback of currents for varying (small) levels K ′
f . When T is nonsingular, this gT,y agrees

with the formulation in [Liu11, Proof of Theorem 4.20] (see also [LZ22a, §15.3]) up to our different

normalization of the Green current (Footnote 32).

For any γ ∈ GLm(OF ), we have

gtγTγ,γ−1ytγ−1 = gT,y (12.4.12)

(“global linear invariance”). This follows from the definition of gT,y, from local linear invariance of

the currents on D, and the formulas Aut(j) = Aut(j · γ) and Θj = Θj·γ .

In all cases, we define the Archimedean intersection number

Int∞,global(T, y) :=

∫
Man

C

gT,y ∧ c1(Ê∨C )n−m. (12.4.13)

This is a real number, and the integral is convergent by the estimates in Lemmas 8.3.3 and 8.3.1.

It does not depend on the choice of embedding F → C. By the compatibility of gT,y with varying

small levels K ′
f , we can extend (12.4.13) to the case of not-necessarily small level by (4.5.2) (i.e.

cover by a small level and divide by the degree of the cover). In the notation of loc. cit., the stack

M implicitly has level K ′
L,f (while we are using the notation M to mean arbitrary level K ′

f in

Section 12.4).

In all cases (including possibly K ′
f not necessarily small level), we have

Int∞,global(T, y) = Int∞(T, y)
[KL0 : K0,f ]

|O×
F |/hF

· deg

[
U(V )(Q)\

∐
x∈Vm

(x,x)=T

D(xf )

]
(12.4.14)

41For any integer N , set RN := R/(
∑

p|N Q · log p). For any set of integers {Ni}i∈I , the diagram

Rgcd({Ni}i∈I )

⊕
i∈I RNi

⊕
(i,i′)∈I2 RNiNi′ (12.4.10)

is an equalizer in the category of sets.
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by construction, where deg means (stacky) groupoid cardinality, where hF is the class number of

OF , and where

Int∞(T, y) :=

∫
D
[ξ(x, y)] ∧ c1(Ê∨)n−m. (12.4.15)

for any x ∈ V m satisfying (x, x) = T . If there is no such x, we set Int∞(T, y) := 0.
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Part 5. Eisenstein series

13. Setup

13.1. The group U(m,m). We fix notation for the unitary group U(m,m).

Let A→ B be a finite locally free morphism of (commutative) rings, and suppose B is given an

involution b 7→ b (“conjugation”) over A. We are mostly interested in the case where F/F+ is a

CM extension of number fields (with F+ the index 2 totally real subfield) and B/A = OF /OF+ for

the corresponding rings of integers (also the local analogues) etc..

Fix an integer m ≥ 0. Write 1m for the m×m identity matrix (sometimes we drop the subscript

m), and let H = U(m,m) be the unitary group

H = U(m,m) :=

{
h ∈ ResB/AGL2m : h

(
0 1m

−1m 0

)
th =

(
0 1m

−1m 0

)}
(13.1.1)

where th denotes conjugate transpose (with H the trivial group if m = 0, by convention). Equiva-

lently, H consists of block matrices(
a b

c d

)
satisfying tac = tca tad− tcb = 1m

tbd = tdb (13.1.2)

with a, b, c, d ∈ ResB/AMm×m. We refer to H as the group U(m,m) (for signature reasons when

B/A is C/R).
Given an integer j with 0 ≤ j ≤ m, we consider the injection

µmj : U(j, j)→ U(m,m)

(
a b

c d

)
7→


1m−j 0 0 0

0 a 0 b

0 0 1m−j 0

0 c 0 d

 . (13.1.3)

Consider the subgroups

P :=

{
h =

(
∗ ∗
0 ∗

)
∈ H

}
(13.1.4)

M :=

{
m(a) =

(
a 0

0 ta−1

)
: a ∈ ResB/AGLm

}
(13.1.5)

N :=

{
n(b) =

(
1m b

0 1m

)
: b ∈ Hermm

}
(13.1.6)

of H. We have P (R) = M(R)N(R) for all A-algebras R. We occasionally write Pm,Mm, Nm to

emphasize dependence on m.

Set

wj =


1m−j 0 0 0

0 0 0 1j

0 0 1m−j 0

0 −1j 0 0

 (13.1.7)

for j with 0 ≤ j ≤ m. We also write w = wm when j = m and m is understood.
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Let Fv be a finite étale algebra of degree 2 over a local field F+
v . Consider B/A = OFv/OF+

v
for

the respective rings of integers (with OF+
v
:= F+

v and OFv
:= Fv if F+

v is Archimedean).

If Fv/F
+
v = C/R, we consider the standard maximal compact subgroup

Kv :=

{(
a b

−b a

)
∈ H(R) : ata+ btb = 1m and atb = bta

}
⊆ H(R) (13.1.8)

We write U(m) ⊆ GLm(C) for (the real points of) the unitary group for the usual positive definite

rank m complex Hermitian space (specified by the Gram matrix 1m). There is an isomorphism

Kv → U(m)×U(m) sending the displayed matrix to (a+ ib, a− ib) ∈ U(m)×U(m) (see e.g. [GS19,

§2.5.1]).
If F+

v is non-Archimedean, we consider the standard open compact subgroup

Kv := H(OF+
v
) ⊆ H(F+

v ). (13.1.9)

If Fv/F
+
v = C/R or if F+

v is non-Archimedean, we have H(F+
v ) = P (F+

v )Kv. If F+
v is non-

Archimedean and

w−1n(b)w = m(a)k (13.1.10)

with n(b) ∈ N(F+
v ) andm(a) ∈M(F+

v ) and k ∈ Kv, we have | det a|Fv < 1 and moreover det a ∈ F+
v

(see [Shi97, §13.4]).
If F/F+ is a CM extension of number fields and B/A = OF /OF+ , we write

K =
∏
v

Kv K∞ =
∏
v|∞

Kv Kf =
∏
v<∞

Kv (13.1.11)

where the products run over places v of F+. Outside of Part 5, we may recycle the notation Kv

etc. to mean other compact groups.

For places v of F+, we use the notation Fv :=
∏
w|v Fw where w runs over places of F , similarly

OFv
:=
∏
w|vOFw , as well as F

+
∞ =

∏
v|∞ F+

v and F∞ =
∏
w|∞ Fw, etc..

13.2. Adèlic and classical Eisenstein series. Characters are assumed continuous and unitary

unless specified otherwise. Let Fv be a degree 2 étale algebra over a local field F+
v , and form the

corresponding unitary group H = U(m,m) as in Section 13.1. If F+
v is Archimedean, we assume

in Section 13.2 that Fv/F
+
v is C/R.

Given s ∈ C and a character χv : F
×
v → C×, we may form the local degenerate principal series

I(s, χv) := Ind
H(F+

v )

P (F+
v )

(χv| − |s+m/2Fv
). (13.2.1)

This is an unnormalized induction, consisting of smooth and Kv-finite functions Φv : H(F+
v ) → C

satisfying

Φv(m(a)n(b)h, s) = χv(a)| det a|s+m/2Fv
(13.2.2)

for all m(a) ∈ M(F+
v ) and n(b) ∈ N(F+

v ) and h ∈ H(F+
v ). Here we wrote χv(a) := χv(det a) for

short. A section Φv(h, s) of I(s, χv) is standard if Φ(k, s) is independent of s for any fixed k ∈ Kv.

We say Φv is spherical if Φv(hk, s) = Φv(h, s) for any k ∈ Kv. We write Φ◦
v for the unique spherical

standard section satisfying Φ◦
v(1, s) = 1 for all s, and call Φ◦

v the normalized spherical section.
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Next, suppose F/F+ is a CM extension of number fields. We write AF for the adèle ring of F

and A for the adèle ring of F+. Given s ∈ C and a character χ : F×\A×
F → C× and s ∈ C, we

similarly form the global degenerate principal series

I(s, χ) := Ind
H(A)
P (A) (χ| − |

s+m/2
F ) (13.2.3)

which is an unnormalized induction, consisting of smooth and K-finite functions Φ: H(A) → C
satisfying

Φ(m(a)n(b)h, s) = χ(a)|det a|s+m/2F (13.2.4)

for all m(a) ∈ M(A) and n(b) ∈ N(A) and h ∈ H(A). Given characters χf : A×
F,f → C× and

χ∞ : A×
F,∞ → C×, we similarly form I(s, χf ) and I(s, χ∞). We also speak of spherical sections and

the spherical standard section, as above. We sometimes write Im(s, χ) etc. to indicate dependence

on m.

Given a standard section Φ(h, s) of the global degenerate principal series I(s, χ), we form the

Siegel Eisenstein series

E(h, s,Φ) =
∑

γ∈P (F+)\H(F+)

Φ(γh, s) (13.2.5)

which is absolutely convergent for Re(s) > m/2. We also form E(h,Φ, s) when Φ is a finite

meromorphic linear combination of standard sections by extending linearly.

Define another character χ̌ : F×\A×
F → C× as χ̌(a) := χ(a)−1. There is a functional equation

E(h,−s,M(χ, s)Φ) = E(h, s,Φ) (13.2.6)

where M(χ, s) : I(s, χ)→ I(−s, χ̌) is the intertwining operator

(M(s, χ)Φ)(h) =

∫
N(A)

Φ(w−1n(b)h, s) dn(b) (13.2.7)

for Re(s) > m/2 (see e.g. [Tan99]). We occasionally write Mm(s, χ) to emphasize the understood

m (in U(m,m)).

Fix an identification of F+
v -algebras Fv ∼= C for each Archimedean place v of F+. We consider

classical Eisenstein series on the Hermitian upper-half space

Hm := {z ∈Mm,m(F∞) : (2i)−1(z − tz) > 0} (13.2.8)

= {z = x+ iy : x, y ∈ Hermm(F
+
∞) with y > 0}, (13.2.9)

where the latter expression means that x and y are m × m Hermitian matrices with y positive

definite (at every place v | ∞ of F+
v ). Given z = x + iy ∈ Hm, we write hz ∈ H(F+

∞) ⊆ H(A) for
any element hz = n(x)m(a) where a ∈ GLm(F∞) satisfies ata = y. Note hz · i1m = z.

We restrict to Φ = Φ∞ ⊗ Φf for standard sections Φ∞ ∈ I(s, χ∞) and Φf ∈ I(s, χf ). Fix an

integer nv for each place v | ∞ of F+
v , and assume χv|F+×

v
= sgn(−)nv for every v | ∞. We also let

k(χv) ∈ Z be the integer satisfying

χv(z) = (z/|z|1/2Fv
)k(χv) where z ∈ Fv, (13.2.10)
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for each place v | ∞ of F+
v . For such v, we let Φv = Φ

(nv)
v be the unique standard section of I(s, χv)

of scalar weight

(n1, n2) where n1 =
n+ k(χ)

2
and n2 =

−n+ k(χ)

2
(13.2.11)

such that Φ
(nv)
v (1, s) = 1 (as in [GS19, §3.2, §3.3]). The scalar weight condition means that

Φ
(nv)
v (hk, s) = det(k1)

n1 det(k2)
n2Φ

(nv)
v (h, s) for all h ∈ H(F+

v ) and k ∈ Kv where n1 = (nv +

k(χv))/2 and n2 = (−nv + k(χv))/2 and

k =

(
a b

−b a

)
∈ Kv k1 = a+ ib k2 = a− ib. (13.2.12)

Note that Φ
(nv)
v does not depend on the choice of identification Fv ∼= C.

If y = ata for some a ∈ GLm(Fv), a computation (omitted) shows

χv(a)
−1(det y)−nv/2Φ(nv)

v (w−1n(b)m(a)) = (det y)s−s0 det(−iy + b)−(s−s0) det(iy + b)−(s−s0)−nv

(13.2.13)

for any b ∈ Hermm(F
+
v ), where s0 = (nv −m)/2 (reduce to the case a = 1m and write w−1n(b) =

n(−b(1m + b2)−1)m(b+ i1m)
−1k for k ∈ Kv). Equation (13.2.13) may be used to translate various

statements from [Shi82] to statements about Archimedean Whittaker functions, etc. (see Section

19.3 for more on this).

Remark 13.2.1. Given g = xg+ iyg ∈Mm,m(C) with xg, yg Hermitian and xg positive definite, we

define log det(g) by the “principal branch” (such that g 7→ log det g is holomorphic, and log det g ∈ R
if yg = 0) as in [Shi82, (1.11)] and the surrounding discussion of loc. cit.. If yg is positive definite

and xg is only assumed Hermitian, we also take

log det g = log det(−ig) +m log i log det g = log det(ig)−m log i (13.2.14)

where log i := πi/2 (as in [Shi82, (1.11)]). This convention is implicit in (13.2.13).

We take Φ∞ = ⊗v|∞Φ
(nv)
v . We write n = (nv)v|∞ for the collection of Archimedean weights (and

will eventually focus on the case where all nv are equal to some fixed integer n). In the above

situation, we write E(h, s,Φ)n := E(h, s,Φ) and consider an associated classical Eisenstein series

E(z, s,Φ)n := E(z, s,Φ) := χ∞(a)−1 det(y)−n/2E(hz, s,Φ)n (13.2.15)

where z = x + iy and hz = n(x)m(a) with ata = y as above, and where det(y)−n/2 stands for∏
v|∞ det(yv)

−nv/2. This does not depend on the choice of hz, i.e. E(hzk∞, s,Φ)n = E(hz, s,Φ)n

for any k∞ ∈ K∞.

When F+ = Q and s0 := (n − m)/2 (setting n = n∞ and k(χ) = k(χ∞)), a computation

(omitted) gives the more classical form

E(z, s,Φ)n =
∑

γ∈P (Z)\U(m,m)(Z)

det(y)s−s0 det(γ)(n+k(χ))/2

det(cz + d)n|det(cz + d)|2(s−s0)
Φf (γ, s) (13.2.16)

=
∑

γ∈P1(Z)\SU(m,m)(Z)

det(y)s−s0

det(cz + d)n| det(cz + d)|2(s−s0)
Φf (γ, s) (13.2.17)
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where

γ =

(
a b

c d

)
, (13.2.18)

where SU(m,m) ⊆ U(m,m) is the determinant 1 subgroup, and P1 := SU(m,m) ∩ P . We have

P (Q)\H(Q) = P (Z)\H(Z) = P1(Q)\H1(Q) = P1(Z)\H1(Z) (e.g. [Ike08, Proposition 12.6]). When

m = 1, the exceptional isomorphism SL2 → SU(1, 1) (over SpecQ) implies that the above expres-

sion is a classical Eisenstein series for SL2 on the upper-half plane.

Our main theorem (Theorem 22.1.1) concerns Fourier coefficients of E(z, s,Φ)n (normalized as

in Section 17.1), but the variant

Ẽ(a, s,Φ)n := χ(a)−1|det(a)|−n/2F E(m(a), s,Φ)n for a ∈ GLn(AF ). (13.2.19)

will be useful for studying Fourier coefficients of E(z, s,Φ)n for singular T (see below). If a ∈
GLm(F∞) is any element satisfying ata for y ∈ Hermm(F

+
∞)>0, we have

E(iy, s,Φ)n = Ẽ(a, s,Φ)n. (13.2.20)

13.3. Fourier expansion and local Whittaker functions. Take notation as in Section 13.2, e.g.

F/F+ is a CM extension of number fields. Choose a nontrivial additive character ψ : F+\A→ C×.

We have a Fourier expansion

E(h, s,Φ) =
∑

T∈Hermm(F+)

ET (h, s,Φ) (13.3.1)

where

ET (h, s,Φ) =

∫
N(F+)\N(A)

E(n(b)h, s,Φ)ψ(−tr(Tb)) dn(b) (13.3.2)

for Re(s) > m/2, and where dn(b) is the Haar measure on N(A) which is self-dual with respect to

the pairing (b, b′) 7→ ψ(tr(bb′)). We refer to ET (h, s,Φ) as the T -th Fourier term.

For any a ∈ GLm(F ), a change of variables gives

ET (m(a)h, s,Φ) = EtaTa(h, s,Φ). (13.3.3)

We also have

ET (m(a)h, s,Φ) = ET (h, s,Φ) for any

(
1m−m♭ ∗

0 1m♭

)
∈ GLm(AF ) if T =

(
0 0

0 T ♭

)
(13.3.4)

with the block matrix T ♭ ∈ Hermm♭(F+) having detT ♭ ̸= 0 (here m♭ is arbitrary) (follows from

[GS19, Lemma 5.4, (5.56)]).

Allowing arbitrary T again, assume there is a factorization Φ = (⊗v|∞Φv)⊗Φf . For each v | ∞,

assume Φv = Φ
(nv)
v is the scalar weight standard section as in Section 13.2, for some nv ∈ Z. Write

n = (nv)v|∞ for the resulting tuple of integers.

Consider a = a∞af ∈ GLm(AF ), with a∞ ∈ GLm(F∞) and af ∈ GLm(AF,f ). Set y = a∞
ta∞

(temporary). We then have T -th Fourier coefficients ET (y, s,Φ)n and ẼT (a, s,Φ)n characterized
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by the relations

ET (y, s,Φ)nq
T = χ∞(a∞)−1 det(y)−n/2ET (n(x)m(a), s,Φ) (13.3.5)

ẼT (a, s,Φ)nψf (tr(Tb))q
T = χ(a)−1|det a|−n/2F ET (n(x+ b)m(a), s,Φ) (13.3.6)

for any x ∈ Hermm(F∞) and b ∈ Hermm(Af ), with z := x+ iy, and with qT := ψ∞(tr(Tz)). These

correspond to the classical Eisenstein series and its variant in (13.2.15) and (13.2.19).

When detT ̸= 0 and Φ = ⊗vΦv is factorizable over all places, we have a factorization

ET (h, s,Φ) =
∏
v

WT,v(hv, s,Φv) (13.3.7)

into local Whittaker functions defined below (13.3.8).

We switch to local notation: let Fv be a degree 2 étale algebra over a local field F+
v , with

nontrivial involution a 7→ a. We assume F+
v has characteristic 0 (because Karel assumes this

[Kar79]). If F+
v is Archimedean, we also assume Fv/F

+
v = C/R.

Let χv : F
×
v → C× and ψv : F

+
v → C× be characters with ψv nontrivial, and suppose Φv ∈ I(s, χv)

is a standard section. Given T ∈ Hermm(F
+
v ) with detT ̸= 0, there is a local Whittaker function

defined by the absolutely convergent integral

WT,v(h, s,Φv) :=

∫
N(F+

v )
Φv(w

−1n(b)h, s)ψv(−tr(Tb)) dn(b) (13.3.8)

for h ∈ H(F+
v ) and s ∈ C with Re(s) > m/2, where dn(b) is the Haar measure which is self-dual with

respect to the pairing (b, b′) 7→ ψv(tr(bb
′)) on Hermm(F

+
v ) ∼= N(F+

v ). For each fixed h, the function

WT,v(h, s,Φv) admits holomorphic continuation to s ∈ C [Kar79, Corollary 3.6.1][KS97][Ich04, §6].
Extending linearly defines WT,v(h, s,Φv) whenever Φv is a finite meromorphic linear combination

of standard sections. For any a ∈ GLm(Fv), a change of variables shows

WT,v(m(a)h, s,Φv) = χ̌v(a)|det a|−s+m/2Fv
WtaTa,v(h, s,Φv) (13.3.9)

for χ̌v(a) := χv(a)
−1 as above. We use the shorthand WT,v(s,Φv) :=WT,v(1, s,Φv).

Lemma 13.3.1. With notation as above, assume that F+
v is non-Archimedean with residue field

of cardinality qv. Suppose Φv ∈ I(s, χv) is a standard section and h ∈ H(F+
v ) is a fixed element.

(1) We have WT,v(h, s,Φv) ∈ C[q−sv , qsv].

(2) If h ∈ Kv, we have WT,v(h, s,Φv) ∈ C[q−2s
v ].

(3) Suppose χ′
v : F

×
v → C× is another character satisfying χ′

v|F+×
v

= ξvχv|F+×
v

for an unramified

character ξv : F
+×
v → C×. Assume h ∈ Kv, and suppose Ψv ∈ I(s, χ′

v) is a standard

section satisfying Ψv(w
−1h) = Φv(w

−1h). If f(X) ∈ C[X] is the polynomial satisfying

f(q−2s
v ) = WT,v(h, s,Φv), then we have f(ξv(ϖ0)q

−2s) = WT,v(h, s,Ψv), where ϖ0 ∈ F+
v is

a uniformizer.

Proof. A general result of Karel [Kar79, Corollary 3.6.1] states that WT,v(h, s,Φv) ∈ C[q−sv , qsv],

and that WT,v(h, s,Φv) may be computed for all s as the integral over a sufficiently large open

compact subgroup of N(F+
v ). Recall that we have Φv(m(a)h, s) = χv(det a)|det a|s+m/2Fv

Φv(h, s)

for all a ∈ GLm(Fv) and all h ∈ H(F+
v ). Then apply the discussion surrounding (13.1.10). □
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In the case where F+
v is non-Archimedean, consider the case where χv is unramified and χv|F+×

v
=

ηnv for some integer n, where ηv : F
+×
v → {±1} is the quadratic character associated to Fv/F

+
v . Con-

sider the normalized spherical standard section Φ◦
v ∈ I(s, χv). We temporarily writeWT,v(h, s,Φ

◦
v)n

for the associated local Whittaker function, emphasizing the possible dependence on n. By Lemma

13.3.1(3), the implicit χv-dependence ofWT,v(h, s,Φ
◦
v)n is only on the restriction χv|F+×

v
. If Fv/F

+
v

is not inert, then WT,v(h, s,Φ
◦
v)n does not depend on n (note n must be even if Fv/F

+
v is ramified).

If Fv/F
+
v is inert, then WT,v(h, s,Φ

◦
v)n depends only the parity of n. The ring endomorphism of

C[q−2s
v ] sending q−2s

v 7→ −q−2s
v swaps WT,v(h, s,Φ

◦
v)n and WT,v(h, s,Φ

◦
v)n+1, by Lemma 13.3.1(3).

13.4. Singular Fourier coefficients. Retain notation from Section 13.3 (switching back to global

notation). The Fourier terms ET (h, s,Φ) for singular T ∈ Hermm(F
+) are known to be closely

related with Fourier terms of Eisenstein series on smaller groups (e.g. [GS19, §5.2]). We focus on

the case where rankT = m − 1 (assume this throughout Section 13.4). On account of (13.3.3), it

will be enough to describe the case where T is block diagonal of the form

T =

(
0 0

0 T ♭

)
(13.4.1)

with detT ♭ ̸= 0.

Assume m ≥ 1, and fix an integer n ∈ Z. Let χ : F×\A×
F → C× be a character satisfying

χ|A× = ηn, where η is the quadratic character associated with F/F+. Note χ̌ = χ in this case.

Take a factorizable standard section Φ = ⊗vΦv ∈ I(s, χ), and assume Φv = Φ
(n)
v is the normalized

scalar weight standard section (Section 13.2) for every Archimedean place v, with n the fixed integer

from above (same for every v | ∞).

Take T as in (13.4.1). Given a ∈ GLm(AF ), we study the Fourier coefficient ẼT (a, s,Φ)n. By

the Iwasawa decomposition, every a ∈ GLm(AF ) admits a decomposition

a =

(
11 ∗
0 1m−1

)(
a# 0

0 a♭

)
k (13.4.2)

with a# ∈ GL1(AF ), with a♭ ∈ GLm−1(AF ), and with k ∈
∏
v|∞ U(m)×

∏
v<∞GLm(OFv). We will

be eventually interested in the case when Φf is spherical, which implies ẼT (ak, s,Φ)n = ẼT (a, s,Φ)

for any k ∈
∏
v|∞ U(m)×

∏
v<∞GLm(OFv) (also using the fact that Φv is a scalar weight standard

section for each v | ∞). In light of the invariance property in (13.3.4), it is thus harmless to restrict

to the case of block diagonal a = diag(a#, a♭). Assume this for the rest of Section 13.4 (but we do

not assume Φf is spherical for now).

Set m♭ := m − 1. Arguing as in the proof of [KR88, Lemma 2.4] (see also [GS19, Lemma 5.4]

and [HSY21, Theorem 2.2]) gives

ẼT (a, s,Φ)n = |det a#|s−s0F ẼT ♭(a♭, s+ 1/2, µm∗
m♭ (s, χ)Φ)n (13.4.3)

+ |det a#|−s−s0F ẼT ♭(a♭, s− 1/2, Um
m♭(s, χ)Φ)n
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where s0 := (n−m)/2, where

Im(s, χ) Im♭(s+ 1/2, χ)

Ψ Ψ ◦ µm
m♭

µm∗
m♭

(s,χ)

(13.4.4)

(with µm
m♭ : U(m♭,m♭)→ U(m,m) as in Section 13.1), and where

Im(s, χ) Im♭(s− 1/2, χ)

Ψ

h 7→∫ b1∈Herm
m−m♭ (A)

b12∈Mm−m♭,m♭ (AF )

Ψ

(
w−1
m · n

(
b1 b12
tb12 0

)
wm♭µmm♭(h), s

)
db1 db12


Um

m♭
(s,χ)

(13.4.5)

for Re(s) > m/2 (with meromorphic continuation to s ∈ C). A calculation shows

Mm♭(s− 1/2, χ) ◦ Um
m♭(s, χ) = µm∗

m♭ (−s, χ) ◦Mm(s, χ), (13.4.6)

compare [GS19, Lemma 5.5(iii)].

In Corollary 17.2.2, we rewrite (13.4.3) more explicitly when Φv is the normalized spherical

standard section for every non-Archimedean v.

14. Weil representation

14.1. Weil index. We recall Weil indices, which are certain constants appearing in the Weil

representation and other calculations below. We compute the instances which we need.

Suppose F+
v is a local field (arbitrary characteristic) with nontrivial additive character ψv : F

+
v →

C×, and suppose Vv is a (finite dimensional) F+
v vector space equipped with a non-degenerate

quadratic form Q(−). The map V → C× given by x 7→ ψv(Q(x)) is a “non-degenerate character of

the second degree” in the sense of [Wei64] [Rao93, Appendix], so there is an associated Weil index

γψv(Vv) ∈ C× (which is an eighth root of unity). The quantity ψψv(Vv) depends only on ψv and

the isomorphism class of Vv, and we have

γψv
(Vv) = γψv(Vv) γψv(Vv ⊕ V ′

v) = γψv(Vv)γψv(V
′
v) (14.1.1)

for orthogonal direct sums Vv ⊕ V ′
v (follows from the definition, see [Rao93, Theorem A.2]). The

Weil index also satisfies a global product formula [Wei64, Proposition 5].

When F+
v has characteristic ̸= 2 and Vv has a bilinear pairing (−,−), our convention is that

x 7→ (x, x) is the associated quadratic form (and vice-versa).

Lemma 14.1.1. Let F+
v be a local field of characteristic ̸= 2, let ψv : F

+
v → C× be a nontrivial

additive character, and let Vv be a finite dimensional F+
v vector space with non-degenerate bilinear

pairing. Assume any of the following situations holds.

(1) The bilinear pairing on Vv is given by(
0 1d

1d 0

)
. (14.1.2)
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(2) The field F+
v is non-Archimedean with residue characteristic ̸= 2, there exists a self-dual

lattice in Vv, and ψv is unramified.

Then the Weil index is γψv(Vv) = 1.

Proof. (1) By compatibility with orthogonal direct sums, we reduce to the case d = 1. Given

a nonzero element a ∈ F+×
v , we use the temporary notation γψv(a) for the Weil index of the

one-dimensional quadratic space containing an element x with (x, x) = a. We have γψv(Vv) =

γψv(a)γψv(−a−1) for some a ∈ F+×
v . We have γψv(a)γψv(−a−1) = 1 (follows from [Rao93, Theorem

A.4], which relates Weil indices and the Hilbert symbol).

(2) By compatibility with orthogonal direct sums, it is enough to show γψv(a) = 1 for a ∈ O×
F+
v
.

This follows from [Rao93, Proposition A.11]. □

Remark 14.1.2. The explicit formula of [Rao93, Proposition A.12] shows that Lemma 14.1.1(2)

is false if F+
v = Q2 (e.g. if Vv has rank one).

Next, let Fv be an étale algebra of degree 2 over a local field F+
v of characteristic ̸= 2 (residue

characteristic 2 allowed). Write ηv : F
+×
v → {±1} for the quadratic character associated to Fv/F

+
v

(trivial if Fv/F
+
v is split), and write a 7→ a for the nontrivial involution of Fv over F+

v . If F+
v is

non-Archimedean, we write d (resp. ∆) for the different (resp. discriminant) ideal for the extension

Fv/F
+
v (where d = OFv and ∆ = OF+

v
in the split case). We sometimes abuse notation and write

d and ∆ for understood/chosen generators of these ideals. We write qv for the residue cardinality

of F+
v if F+

v is non-Archimedean.

Any non-degenerate Fv/F
+
v Hermitian space Vv has an associated F+

v -bilinear pairing 1
2trFv/F

+
v
(−,−)

and quadratic form x 7→ 1
2trFv/F

+
v
(x, x). (Elsewhere, we typically normalize the trace bilinear pair-

ing without the factor of 1
2 .) We write γψv(Vv) for the Weil index of this quadratic space with

respect to a nontrivial additive character ψv : F
+
v → C×. We know γψv(Vv)

4 = 1 (see e.g. [Rao93,

Corollary A.5(4)] and [Kud94, Theorem 3.1]).

We write γψv(Fv) for the Weil index associated to the one-dimensional Hermitian space Fv with

pairing (x, y) = xy. We write ϵv(s, ξv, ψv) for the local epsilon factor associated to a quasi-character

ξv : F
+×
v → C× (as in [Tat79, §3][Tat67b], for the quasi-character ξv| − |s and the self-dual Haar

measure for ψv).

If F+
v is non-Archimedean with uniformizer ϖ0, we have

ϵv(s, ηv, ψv) = |ϖc(ψv)
0 ∆|s−1/2

F+
v

γψv(Fv) (14.1.3)

where

c(ψv) = max{j ∈ Z : ψv|ϖ−j
0 O

F+
v

is trivial}. (14.1.4)

If F+
v is Archimedean, we have

ϵv(s, ηv, ψv) = |a|s−1/2

F+
v

γψv(Fv). (14.1.5)

where a ∈ F+×
v is such that

ψv(x) = e2πiax if F+
v = R and ψv(z) = e2πitrC/R(az) if F+

v = C. (14.1.6)
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These identities follow from [JL70, Lemma 1.2(iii),(iv)] and properties of epsilon factors. For the

reader’s convenience, we recall γψv(C) = i if F+
v = R and ψv(x) = e2πix.

In all cases, we have

γψv(Fv)
2 = ϵv(1/2, ηv, ψv)

2 = ηv(−1). (14.1.7)

If F+
v is non-Archimedean, recall that ϵv(s, ξv, ψv) = 1 if ξv and ψv are unramified. If F+

v = R and

ψv(x) = e2πix, recall ϵv(s, sgn
j , ψv) = 1 (resp. = −i) if j is even (resp. odd) where sgn: R× → {±1}

is the sign character (these formulas will be used implicitly in Section 16.2). Recall our convention

that self-duality for Hermitian lattices is understood with respect to the trace pairing (unless

otherwise specified), Section 2.2.

For Hermitian lattices, we always use the term self-dual to mean self-dual with respect to the

trace pairing (i.e. L = L∨) unless specified otherwise. If Fv/F
+
v is ramified and L is a self-dual

Hermitian lattice, then L must have even rank (see e.g. [Shi97, Lemma 13.3]).

Lemma 14.1.3. Let F+
v be a local field of characteristic ̸= 2, let ψv : F

+
v → C× be a nontrivial

additive character, and let Fv/F
+
v be a degree 2 étale algebra. Let Vv be a finite dimensional non-

degenerate Fv/F
+
v Hermitian space. Assume any of the following situations hold.

(1) The Hermitian space Vv admits a basis with Gram matrix.(
0 1d

1d 0

)
. (14.1.8)

(2) We have Fv = F+
v × F+

v .

(3) The extension Fv/F
+
v is unramified or F+

v has residue characteristic ̸= 2. Moreover, the

field F+
v is non-Archimedean, there exists a full-rank self-dual OFv -lattice in Vv, and Vv has

even rank.

(4) The field F+
v is non-Archimedean, the extension Fv/F

+
v is unramified, there exists a full-

rank self-dual lattice in Vv, and ψv is unramified.

Then the Weil index is γψv(Vv) = 1.

Proof. We have (3) =⇒ (1) (see [LL22, Lemma 2.12] for the ramified situation, in which case

the even rank assumption is redundant). This implication is false if Fv/F
+
v is ramified with F+

v of

residue characteristic 2.

In situations (1) and (2) we may pick a basis {1, α} for Fv as an F+
v vector space where

trFv/F
+
v
(α) = 0. Applying Lemma 14.1.1 proves the claims.

In situation (4), we may diagonalize the given self-dual lattice, hence reducing to the case where

Vv has rank one. In this case, we have γψv(Vv) = γψv(Fv) = ϵ(1/2, ηv, ψv) = 1. □

14.2. Weil representation. Let Fv/F
+
v and accompanying notation be as in Section 14.1. Assume

Fv/F
+
v = C/R if F+

v is Archimedean. We also assume F+
v has characteristic 0 (because [Kud94]

assumes this).

Let Vv be a non-degenerate Fv/F
+
v Hermitian space of dimension n ≥ 0. Choose a nontrivial

additive character ψv : F
+
v → C×, and let χv : F

×
v → C× be a character such that χv|F+×

v
= ηnv .

140



There is a local Weil representation ωv = ωχv ,ψv of U(m,m)(F+
v ) × U(Vv)(F

+
v ) on the space of

Schwartz function S(V m
v ) (the Schrödinger model [Kud94]), which we normalize as

(ωv(m(a))φv)(x) = χv(det a)|det a|n/2Fv
φv(x · a) m(a) ∈M(F+

v )

(ωv(n(b))φv)(x) = ψv(tr b(x, x))φv(x) n(b) ∈ N(F+
v )

(ωv(w)φv)(x) = γψv(Vv)
mφ̂v(x) m(a) ∈M(F+

v )

(ωv(h)φv)(x) = φv(h
−1 · x) h ∈ U(m,m)(F+

v )

for φv ∈ S(V m
v ) and x ∈ V m

v (viewed as n×m matrices), where

φ̂v(x) =

∫
Vm
v

φv(y)ψv(trFv/F
+
v
tr(x, y)) dy (14.2.1)

is Fourier transform for the corresponding self-dual Haar measure on V m
v . The constant γψv(Vv) is

the Weil index from Section 14.1

With s0 := (n −m)/2, there is a map S(V m
v ) → I(χv, s0) sending φv ∈ S(V m

v ) to the function

h 7→ (ωv(h)φv)(0). The associated standard section Φφv ∈ I(χv, s) is the Siegel–Weil section for

φv [GS19, §5.1].
If F+

v is non-Archimedean, choose a generator d of the different ideal of Fv/F
+
v , and let M◦

2 be

the rank 2 Hermitian OFv -lattice admitting a basis with Gram matrix(
0 d−1

d
−1

0

)
. (14.2.2)

Note that M◦
2 =M◦∗

2 is self-dual (with respect to the F+
v -bilinear pairing trFv/F

+
v
(−,−)).

Lemma 14.2.1. In the situation above, assume moreover that χv and ψv are unramified, and that

F+
v is non-Archimedean. Suppose φv = 111⊗mM where 111M is the characteristic function of a full rank

OFv -lattice M ⊆ Vv in any of the following situations.

(1) The lattice M is self-dual. Moreover, the extension Fv/F
+
v is unramified, or F+

v has residue

characteristic ̸= 2.

(2) We have M ∼= (M◦
2 )

⊕d (orthogonal direct sum) for some d ≥ 0.

Then the associated Siegel-Weil section Φφv is the normalized spherical section Φ◦
v, i.e. Kv-fixed

with Φφv(1) = 1.

Proof. Follows from the explicit formulas above, since w and P (OF+
v
) generateKv = U(m,m)(OF+

v
)

and since the Weil index γψv(Vv) is 1 (Lemma 14.1.3).

If M has even rank, then condition (1) implies condition (2) (the ramified case is [LL22, Lemma

2.12]). □

Next, consider the case where Fv/F
+
v = C/R. Suppose the n-dimensional Hermitian space Vv is

positive definite, with Hermitian pairing (−,−). If ψv(x) = e2πix, the Gaussian

φv(x) = e−2πtr(x,x) ∈ S(V m
v ) (14.2.3)
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for x = (x1, . . . , xm) ∈ V m
v (where tr(x, x) = (x1, x1) + · · · + (xm, xm)) has associated Siegel–Weil

section

Φφv = Φ(n)
v (14.2.4)

where Φ
(n)
v is the scalar weight standard section described surrounding (13.2.11), see [GS19, (2.68)].

Remark 14.2.2. Suppose F/F+ is a CM extension of number fields with associated quadratic

character η and accompanying notation as in Section 13.2. With m and n as above, choose any

character χ : F×\A×
F → C× satisfying χ|A× = ηn. Choose nontrivial additive characters ψv : F

+
v →

C× for each place v (the ψv need not come from a global character). Suppose we are given a

collection of local Weil representations ωχv ,ψv on some S(V m
v ) for each place v of F+

v (where the

collection (Vv)v of local Hermitian spaces need not come from a global Hermitian space). Choose

φv ∈ S(V m
v ) for each place v, and assume φv = 111mLv

for some full-rank self-dual lattice Lv ⊆ Vv for

all but finitely many v. Set Φ :=
⊗

v Φφv .

In this situation, the Eisenstein series variant Ẽ(a, s,Φ)n (13.2.19) does not depend on the choice

of χ. This follows upon inspecting the Weil representation, particularly the action of m(a).

This remark also has a local version, i.e. the Whittaker function variants W̃ ∗
T,v(a, s)

◦
n and

W̃ ∗
T,v(a, s,Φφv)n (Sections 15.2 and 15.3) do not depend on the choice of χv.

15. Local Whittaker functions

Let Fv/F
+
v and accompanying notation be as in Section 14.2. If F+

v has residue characteristic

2, we also assume Fv/F
+
v is unramified. Let χv : F

×
v → C× be a character satisfying χv|F+×

v
= ηnv

for some integer n ∈ Z, with n even if Fv/F
+
v is ramified. Assume χv is unramified if F+

v is

non-Archimedean. Let ψv : F
+
v → C× be an unramified nontrivial additive character. Assume

ψv(x) = e2πix if F+
v = R. These are our default hypotheses, but weaker hypotheses often suffice

(as will be indicated below).

Let Φ◦
v ∈ I(s, χv) be the normalized spherical standard section if F+

v is non-Archimedean. Let

Φ
(n)
v ∈ I(s, χv) be the normalized scalar weight standard section from Section 13.2 if Fv/F

+
v = C/R.

Given an integer m ≥ 0 (we do not assume m ≤ n, unless otherwise specified) and given

T ∈ Hermm(F
+
v ) with detT ̸= 0, we define normalized local Whittaker functions

W ∗
T,v(h, s)

◦
n := ΛT,v(s)

◦
nWT,v(h, s,Φ

◦
v) for F+

v non-Archimedean (15.0.1)

W ∗
T,v(h, s)

◦
n := ΛT,v(s)

◦
nWT,v(h, s,Φ

(n)
v ) for F+

v Archimedean (15.0.2)

for certain normalizing factors ΛT,v(s)
◦
n (see (15.3.1) and (15.2.1) below).

The preceding normalization gives W ∗
T,v(h, s)

◦
n a clean functional equation (Section 16). More-

over, the normalized function W ∗
T,v(h, s)

◦
n (as opposed to the unnormalized versions) seem to cor-

respond more naturally to local information about special cycles (e.g. local contributions to arith-

metic degrees) in arithmetic (and non-arithmetic) Siegel–Weil formulas. For example, our main

local theorems (Part 6) are proved in terms of the derivative of W ∗
T,v(1, s)

◦
n and not WT,v(1, s,Φ

◦
v)

or WT,v(1, s,Φ
(n)
v ).

The normalizing factors ΛT,v(s)
◦
n also carry geometric information. For example, consider an

imaginary quadratic field F/Q of odd discriminant, suppose m = n is even, and form the product
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2
∏
v ΛT,v(s)

◦
n over all places v of Q. If n ≡ 0 (mod 4), evaluation at s = 0 returns the degree

of a certain 0-dimensional unitary complex Shimura variety (stack), giving a case of a unitary

analogue of the Siegel mass formula. If n ≡ 2 (mod 4), evaluation at s = 0 returns the volume of a

certain (n− 1)-dimensional unitary complex Shimura variety (stack). These volume identities will

be discussed in Section 21.2 (but are not needed for our main theorems on arithmetic Siegel–Weil).

15.1. Local L-factors. We use the following (standard) local factors as in [Tat79, §3].
If F+

v is a local field (allowing arbitrary characteristic in Section 15.1) and ξv : F
+×
v → C× is

a quasi-character, we write Lv(s, ξv) for the corresponding local L-factor (for the quasi-character

ξv| − |sF+
v
). Given any nontrivial additive character ψv : F

+
v → C×, we write ϵv(s, ξv, ψv) for the

corresponding local epsilon factor (as appeared in Section 14.1) and ρv(s, ξv, ψv) for the local factor

from Tate’s thesis [Tat67b, Theorem 2.4.1], which satisfies

ρv(s, ξv, ψv) = ϵv(s, ξv, ψv)
−1Lv(1− s, ξ−1

v )−1Lv(s, ξv). (15.1.1)

If F+ is a global field with a quasi-character ξ : F+×\AF+ → C× and nontrivial additive character

ψ : F+\AF+ → C×, we write

Λ(s, ξ) =
∏
v

Lv(s, ξv) L(s, ξ) =
∏
v<∞

Lv(s, ξ) ϵ(s, ξ) =
∏
v

ϵv(s, ξv, ψv) (15.1.2)

and have Λ(s, ξ) = ϵ(s, ξ)Λ(1− s, ξ−1). For the reader’s convenience, we recall the formulas

Lv(s, ξv) =

(1− ξv(ϖ0)|ϖ0|sF+
v
)−1 if ξv is unramified

1 if ξv is ramified
if F+

v is non-Archimedean

with uniformizer ϖ0 ∈ F+
v

Lv(s, sgn
j) =

π−s/2Γ(s/2) if j is even

π−(s+1)/2Γ((s+ 1)/2) if j is odd
if F+

v = R and sgn denotes

the sign character.

15.2. Normalized Archimedean Whittaker functions. With notation as above, assume Fv/F
+
v

is C/R and let ψv : R→ C× be the standard additive character x 7→ e2πix. The symbol h will denote

an element of U(m,m)(F+
v ). Fix integers n,m with m ≥ 0.

Consider T ∈ Hermm(F
+
v ) with detT ̸= 0. With s0 := (n − m)/2 as above, we define the

normalizing factor

ΛT,v(s)
◦
n :=

(2π)m(m−1)/2

(−2πi)nm
πm(−s+s0)

m−1∏
j=0

Γ(s− s0 + n− j)

 | detT |−s−s0
F+
v

(15.2.1)

(compare [GS19, (3.3.14)], also Shimura [Shi82]) where Γ is the usual gamma function.

We define a normalized Archimedean Whittaker function

W ∗
T,v(h, s)

◦
n := ΛT,v(s)

◦
nWT,v(h, s,Φ

(n)
v ). (15.2.2)

For a ∈ GLm(Fv), we also consider the variant

W̃ ∗
T,v(a, s)

◦
n := χv(a)

−1| det a|−n/2Fv
W ∗
T,v(m(a), s)◦n · q−T q−T := e−2πitr(iTy) (15.2.3)

143



with y := ata (temporary notation). This is a (normalized) local analogue of (13.3.6). For any

a ∈ GLm(Fv) and k ∈ U(m), we have the “linear invariance” properties

W̃ ∗
T,v(a, s)

◦
n = W̃ ∗

taTa(1, s)
◦
n W̃ ∗

T,v(1, s)
◦
n = W̃ ∗

T,v(k, s)
◦
n. (15.2.4)

The first expression follows from (13.3.9), and the second expression follows from the scalar weight

property of Φ
(n)
v . Given y ∈ Hermm(R)>0, we also set W ∗

T,v(y, s)
◦
n := W̃ ∗

T,v(m(a), s)◦n for any

a ∈ GLm(Fv) satisfying ata = y (does not depend on the choice of a).42 We use the shorthand

W ∗
T,v(s)

◦
n := W̃ ∗

T,v(1, s)
◦
n.

For all n ∈ Z, we have the functional equation

W ∗
T,v(h, s)

◦
n = ηv(detT )

n−m−1W ∗
T,v(h,−s)◦n. (15.2.5)

The case when T is positive definite follows from [Shi82, Theorem 3.1] (via (13.2.13), see also

[GS19, (3.54)]). The case of general T (still with detT ̸= 0) should follow from [Shi82, Theorem

4.2, (4.34.K)], though we will give an alternative proof (Lemma 16.2.1). Here ηv is the sign character

sgn(−).
Write (r1, r2) for the signature of T (temporary notation). If either n ≥ r1 or r2 = 0, then the

function W ∗
T,v(h, s)

◦
n is holomorphic for all s ∈ C, for fixed h (follows from [Shi82, Theorem 4.2,

(4.34.K)]). For any a ∈ GLm(Fv), we also have

W̃ ∗
T,v(a, s0)

◦
n =

1 if T is positive definite

0 if m ≤ n and T is not positive definite.
(15.2.6)

For the case when T is positive definite, see [Shi97, (3.15)] (also the proof of [GS19, Proposition

3.2]). The non positive definite case with m ≤ n follows from [Shi82, Theorem 4.2, (4.34.K)] (see

also [GS19, Proposition 3.3(i)]).

15.3. Normalized non-Archimedean Whittaker functions. With n, χv, ψv, ηv, etc. as at the

beginning of Section 15, assume F+
v is non-Archimedean. For the moment, we only assume F+

v has

characteristic ̸= 2, and allow χv possibly ramified. We can also allow Fv/F
+
v to be ramified with F+

v

of residue characteristic 2 in Section 15.3. The symbol h will denote an element of U(m,m)(F+
v ).

Assume ψv : F
+
v → C× is a nontrivial unramified additive character. Let ϖ0 be a uniformizer of

F+
v , and let qv be the residue cardinality of F+

v . Consider T ∈ Hermm(F
+
v ) with detT ̸= 0.

We define the local normalizing factor

ΛT,v(s)
◦
n := |∆|−m(m−1)/4

F+
v

m−1∏
j=0

Lv(2s+m− j, ηj+nv )

 |(detT )∆⌊m/2⌋|−s−s0
F+
v

. (15.3.1)

The local L-factors appearing in ΛT,v(s)
◦
n should be compared with e.g. [HKS96, §6].

Suppose Vv is an n-dimensional non-degenerate Fv/F
+
v Hermitian space. Consider a full-rank

lattice Lv ⊆ Vv, and take the Schwartz function φv = 111mLv
∈ S(V m

v ). Form the associated Siegel–

Weil standard section Φφv ∈ I(χv, s). Let S be the Gram matrix of any basis for Lv.

42With this notation, there is possible ambiguity for the meaning of W ∗
T,v(1, s)

◦
n, which could refer to either

W ∗
T,v(h, s)

◦
n or W ∗

T,v(y, s)
◦
n evaluated at h = 12m or y = 1m. To avoid confusion, we will avoid the symbol W ∗

T,v(1, s)
◦
n

when v is Archimedean.
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We consider the normalized local Whittaker function W ∗
T,v and the variant W̃ ∗

T,v

W ∗
T,v(h, s,Φφv)n := γψv(Vv)

mvol(Lv)
−mΛT,v(s)

◦
nWT,v(h, s,Φφv) (15.3.2)

W̃ ∗
T,v(a, s,Φφv)n := χv(a)

−1|det a|−n/2Fv
W ∗
T,v(m(a), s,Φφv) (15.3.3)

for a ∈ GLm(Fv). The volume vol(Lv) is taken with respect to the self-dual Haar measure with

respect to the pairing x, y 7→ ψv(tr(x, y)) on Vv (compare Lemma 15.4.2). The variant W̃ ∗
T,v is

a local analogue of (13.2.19). These will depend on n in general. For any a ∈ GLm(Fv) and

k ∈ GLm(OF+
v
), we have the “linear invariance” property

W̃ ∗
T,v(a, s,Φφv)n = W̃ ∗

taTa,v(1, s,Φφv)n W ∗
T,v(1, s,Φφv)n = W̃ ∗

T,v(1, s)n = W̃ ∗
T,v(k, s,Φφv)n.

(15.3.4)

The left expression follows from (13.3.9). The right expression follows from the expression χv(k)
−1ωv(m(k))φv =

φv for all k, where ωv is the local Weil representation (Section 14.2).

Now assume χv is unramified, and recall the normalized spherical standard section Φ◦
v ∈ I(χv, s).

If Lv is self-dual, we have Φφv = Φ◦
v (Section 14.2), at least outside the case of Fv/F

+
v ramified

with residue characteristic 2. If Fv/F
+
v is ramified of residue characteristic 2, this still holds if

Lv = (M◦
2 )

⊕d for some d ≥ 0 (with M◦
2 the “standard” self-dual lattice from (14.2.2). Note that

γψv(Vv) = 1 in these cases.

In the situation of the previous paragraph, we set

W ∗
T,v(h, s)

◦
n :=W ∗

T,v(h, s,Φφv)n W̃ ∗
T,v(a, s)

◦
n := W̃ ∗

T,v(a, s,Φφv)n

for h ∈ H(F+
v ) and a ∈ GLm(Fv). Note W ∗

T,v(h, s)
◦
n = ΛT,v(s)

◦
nWT,v(h, s,Φ

◦
v). The alternative

normalization

W
(∗)
T,v(h, s)

◦
n := |(detT )∆⌊m/2⌋|s+s0

F+
v
W ∗
T,v(h, s)

◦
n (15.3.5)

will also be useful.

We use the shorthand W ∗
T,v(s)

◦
n :=W ∗

T,v(1, s)
◦
n and W

(∗)
T,v(s)

◦
n :=W

(∗)
T,v(1, s)

◦
n. We further describe

these functions in the following sections (e.g. special values and functional equations). We are

mostly interested in the spherical local Whittaker function W ∗
T,v(h, s)

◦
n, and the case of general φv

plays a very limited role in the present work.

15.4. Local densities. We relate non-Archimedean Whittaker functions with local densities. This

should be essentially known, but we restate the result for clarity (Lemma 15.4.2).43 In Section 15.4,

we do not need to assume χv is unramified (but still require χv|F+×
v

= ηnv ).

Retain notation and assumptions from Section 15.3. In Section 15.4, we now require F+
v to have

characteristic 0, exclude the case where Fv/F
+
v is ramified with F+

v of residue characteristic 2, and

43The proof is essentially as in [KR14, Proposition 10.1], with a few modifications. In the ramified situation,

we should use M◦
2 (from Section 14.2) instead of L1,1 (in the proof of loc. cit.); the proposition statement changes

correspondingly, see [Shi22, Proposition 9.7]. Moreover, the quantity γp(V )n appearing before [KR14, (10.3)] should

be γp(V )−n for consistency with the Schrödinger model of the Weil representation from [Kud94, Theorem 3.1 §3,
§5] (and the same applies to [Shi22, Proposition 9.7]). The interpolation of WT,v(s,Φφv ) in the two cited references

should also be shifted by s0 = (n−m)/2 in the s-variable. The cited results also restrict to the case F+
v = Qp, but

the result and (modified) proof hold more generally.
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take n ≥ 0. We write

Hermm(OF+
v
)∗ := {b ∈ Hermm(F

+
v ) : tr(bc) ∈ OF+

v
for all c ∈ Hermm(OF+

v
)} (15.4.1)

= {b ∈ Hermm(F
+
v ) : bi,j ∈ OF+

v
if i = j and bi,j ∈ d−1OFv if i ̸= j}.

Given nonsingular Hermitian matrices S ∈ Hermn(F
+
v ) and T ∈ Hermm(F

+
v ), we consider the local

representation density (or just local density)

Den(S, T ) := lim
k→∞

vol({x ∈Mn,m(OFv) :
txSx− T ∈ ϖk

0Hermm(OF+
v
)∗})

q−km
2

v

(15.4.2)

where Mn,m(OFv) is given the Haar measure of total volume 1. The limit argument stabilizes for

k ≫ 0 (follows from the proof of Lemma 15.4.2). The local density Den(S, T ) depends only on the

isomorphism classes of the Hermitian lattices defined by S and T . If n < m then Den(S, T ) = 0.

If S ∈ Hermn(OF+
v
)∗, we have

Den(S, T ) = lim
k→∞

#{x ∈Mn,m(OFv/ϖ
k
0OFv) :

txSx− T ∈ ϖk
0Hermm(OF+

v
)∗}

q
k·m(2n−m)
v

. (15.4.3)

If S ∈ Hermn(OF+
v
)∗ and T ̸∈ Hermm(OF+

v
)∗, we have Den(S, T ) = 0.

Remark 15.4.1. If S ∈ Hermn(OF+
v
)∗ and T ∈ Hermm(OF+

v
)∗ with m ≤ n, the local density

Den(S, T ) admits the following equivalent formulation. Suppose M (resp. L) is a Hermitian OFv -

lattice which admits a basis with Gram matrix S (resp. T ). Write d for any trace-zero generator

of the different ideal d of Fv/F
+
v , and let M ′ (resp. L′) be the skew-Hermitian lattice with pairing

dS (resp. dT ). If Herm(M ′, L′) is the scheme of skew-Hermitian module homomorphisms given by

Herm(M ′, L′)(R) := Herm(M ′ ⊗R,L′ ⊗R) (15.4.4)

for OF+
v
-algebras R (where the right-hand side means OFv -linear homomorphisms preserving the

skew-Hermitian pairing), we have

#Herm(M ′, L′)(OF+
v
/ϖk

0OF+
v
) = #{x ∈Mn,m(OFv/ϖ

k
0OFv) :

txSx− T ∈ ϖk
0Hermm(OF+

v
)∗}

(15.4.5)

and also m(2n−m) = dim(Herm(M ′, L′)× SpecF+
v ) (and the right-hand side is nonempty). This

recovers the formulations in [LZ22a, §3.1] (inert), [FYZ24, §2.3] (inert and split), and [HLSY23,

§5.1] (ramified).

Return to the situation of general S and T (and possibly m > n). Fix characters χv : F
×
v → C×

and ψv : F
+
v → C× as above, with ψv unramified. Let M be a Hermitian OFv -lattice admitting a

basis whose Gram matrix is S. Write Vv =M ⊗OFv
Fv for the associated Fv/F

+
v Hermitian space,

and let φv ∈ S(V m
v ) be the function φv = 111⊗mM , where 111M is the characteristic function of M .

Let Φφv ∈ I(s, χv) be the associated Siegel–Weil section, and form the local Whittaker function

WT,v(h, s,Φφv) as in Section 13.3. Set WT,v(s,Φφv) :=WT,v(1, s,Φφv).

With M◦
2 being the rank 2 self-dual Hermitian lattice from (14.2.2), let Sr,r be the Gram matrix

of a basis for Lv,r,r :=M ⊕ (M◦
2 )

⊕r (orthogonal direct sum). When Fv/F
+
v is not ramified, we also

let Sr be the Gram matrix of a basis for Lv,r :=M ⊕ ⟨1⟩⊕r (orthogonal direct sum), where ⟨1⟩ is a
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rank one self-dual lattice. The notations Lv,r,r and Lv,r will only be used in the proof of the next

lemma.

Lemma 15.4.2. With notation as above, there exists Den(S, T,X) ∈ Q[X] (necessarily unique)

such that

WT,v(s0 + s,Φφv) = γψv(Vv)
−m| detS|m

F+
v
|∆|e

F+
v
Den(S, T, q−2s

v ) for all s ∈ C (15.4.6)

Den(Sr,r, T ) = Den(S, T, q−2r
v ) for all r ∈ Z≥0 (15.4.7)

where γψv(Vv) is the Weil index, s0 = (n −m)/2, and e = nm/2 +m(m − 1)/4. For all r ∈ Z≥0,

we also have

Den(Sr, T ) = Den(S, T, (−qv)−r) if Fv/F
+
v is inert (15.4.8)

Den(Sr, T ) = Den(S, T, q−rv ) if Fv/F
+
v is split. (15.4.9)

Proof. As mentioned above (Footnote 43), this is a restatement of a result which should be es-

sentially known [KR14, Proposition 10.1] [Shi22, Proposition 9.7], up to a few modifications. The

modified version stated here may be proved by a similar interpolation argument, as explained below.

For any r ∈ Z≥0, set Vv,r,r := Lv,r,r ⊗OFv
Fv, and let φv,r,r = 111mLv,r,r

. Equip Hermm(OF+
v
) and Vv,r,r

with the self-dual Haar measures with respect to (b, c) 7→ ψv(tr(bc)) and ψv(trFv/F
+
v
(tr(−,−)))

respectively. Using the Weil representation, we compute

WT,v(s0 + r,Φφv) (15.4.10)

= lim
k→∞

∫
ϖ−k

0 Hermm(O
F+
v
)
ψv(−tr(Tb))Φφv(w

−1n(b), s0 + r) dn(b)

= γψv(Vv)
−m lim

k→∞

∫
ϖ−k

0 Hermm(O
F+
v
)
ψv(−tr(Tb))

∫
Vm
v,r,r

ψv(tr(b(x, x)))φv,r,r(x) dx dn(b)

= γψv(Vv)
−m lim

k→∞
vol(ϖ−k

0 Hermm(OF+
v
))

∫
x∈Vm

v,r,r

(x,x)−T∈ϖk
0Hermm(O

F+
v
)∗

φv,r,r(x) dx

= γψv(Vv)
−mvol(Hermm(OF+

v
))vol(Lmv,r,r)Den(Sr,r, T )

We have the volume identities

vol(Hermm(OF+
v
)) = |∆|m(m−1)/4

F+
v

vol(Lv,r,r) = | detS|F+
v
|∆|n/2

F+
v

(15.4.11)

for the self-dual Haar measures described above. We already know WT,v(s,Φφv) ∈ C[q−2s
v ] by

Lemma 13.3.1. Since Den(Sr,r, T ) ∈ Q for all r ≥ 0, we conclude WT,v(s,Φφv) ∈ Q[q−2s
v ]. The

additional claims involving Den(Sr, T ) in the unramified case may be proved similarly, using Lv,r

instead of Lv,r,r. □

15.5. Local densities and spherical non-Archimedean Whittaker functions. Take Fv/F
+
v ,

ψv, and χv as in Section 15.4, and continue to assume n ≥ 0 for the moment. Set s0 = (n−m)/2.

We assume χv is unramified.
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Let M◦ be a self-dual Hermitian OFv -lattice of rank n. This characterizes M◦ uniquely up to

isomorphism, and forces n to be even if Fv/F
+
v is ramified. We also have γψv(Vv) = 1 (Lemma

14.1.3).

Set Vv = M◦ ⊗OFv
Fv, and let φv ∈ S(V m

v ) be the characteristic function of M◦m. Then the

associated Siegel–Weil section Φφv ∈ I(s, χv) coincides with the normalized spherical Whittaker

function Φ◦
v (Lemma 14.2.1).

Remark 15.5.1. Even if χv is possibly ramified, we still have WT,v(s,Φφv) = WT,v(s,Φ
◦
v) for any

T ∈ Hermm(F
+
v ) with detT ̸= 0 (by Lemma 13.3.1(3) or Lemma 15.4.2), where Φ◦

v ∈ I(s, χ′
v) is

the standard normalized spherical section for an unramified χ′
v.

Suppose T ∈ Hermm(F
+
v ) with detT ̸= 0. If S is the Gram matrix of any basis for M◦, Lemma

15.4.2 gives

WT,v(s0 + s,Φ◦
v) = |∆|

m(m−1)/4

F+
v

Den(S, T, q−2s
v ) (15.5.1)

for all s ∈ C.
Suppose M◦′ is a rank m Hermitian OFv -lattice such thatM◦′ is self-dual if Fv/F

+
v is unramified or if m is even

M◦′ is almost self-dual if Fv/F
+
v is ramified and m is odd.

(15.5.2)

Let S′ ∈ Herm(F+
v ) be the Gram matrix of a basis for M◦′. We havem−1∏

j=0

Lv(2(s+ s0) +m− j, ηj+nv )

−1

= Den(S, S′, X)|X=q−2s
v
. (15.5.3)

See [LZ22a, (3.2.0.1)] (inert), [FYZ24, Theorem 2.2] (split and inert), [LL22, Lemma 2.15] (rami-

fied).

There is a (normalized) local density polynomial Den(X,T )n ∈ Z[1/qv][X] such that

W
(∗)
T,v(s+ s0)

◦
n = Den(q−2s

v , T )n (15.5.4)

for all s ∈ C (with W
(∗)
T,v as in Section 15.3). See the “Cho–Yamauchi formulas” proved in [LZ22a,

Theorem 3.5.1] (inert), [FYZ24, Theorem 2.2] (split and inert), and [LL22, Lemma 2.15] (ramified).

Note that our convention differs slightly from [LL22] in the ramified case, where they consider

polynomials in q−sv instead.

The polynomial Den(X,T )n is nonzero if and only if T ∈ Herm(OF+
v
)∗, in which case Den(X,T )n

has constant term 1. When m = n, we have Den(X,T )n ∈ Z[X] for any T . More classically, see

[Shi97, Theorem 13.6], which implies that Den(qnvX,T )n ∈ Z[X] with constant term 1.

We have

Den(X,T )n+1 = Den(q−1
v X,T )n if Fv/F

+
v is split

Den(X,T )n+1 = Den(−q−1
v X,T )n if Fv/F

+
v is inert (15.5.5)

Den(X,T )n+2 = Den(q−2
v X,T )n if Fv/F

+
v is ramified.

For n < 0, we define Den(X,T )n using (15.5.5). Note that (15.5.4) continues to hold. For the rest

of Section 15.5, we allow general n ∈ Z (assumed even if Fv/F
+
v is ramified).
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Similarly, there is a (normalized) local density (Laurent) polynomial Den∗(X,T )n ∈ Z[1/qv][X,X−1/2]

such that

W ∗
T,v(s+ s0)

◦
n = Den∗(q−2s

v , T )n (15.5.6)

for all s ∈ C (with W ∗
T,v as in Section 15.3).

Remark 15.5.2. On the right-hand side of (15.5.6), we mean evaluating Den∗(X,T )n at X1/2 =

q−sv . We similarly abuse notation elsewhere. For example, Den∗(qvX,T )n ∈ Z[1/q1/2v ][X,X−1/2] is

obtained from Den∗(X,T )n by replacing X1/2 with q
1/2
v X1/2. The notation d

dX : Q[X,X−1/2] →
Q[X,X−1/2] means the Q-linear map Xj/2 7→ (j/2)Xj/2−1.

If T defines a self-dual Hermitian lattice when m is even or Fv/F
+
v is unramified (resp. almost

self-dual Hermitian lattice when m is odd and Fv/F
+
v is ramified), we have

W ∗
T,v(s)

◦
n =W

(∗)
T,v(s)

◦
n = 1 Den∗(X,T )n = Den(X,T )n = 1 (15.5.7)

(follows from (15.5.3)). For such T , an application of Lemma 13.3.1(3) also shows that

WT,v(s,Φ
◦
v) = |∆|

m(m−1)/4

F+
v

m−1∏
j=0

Lv(2s+m− j, ηjvχ′
v|F+×

v
)−1 (15.5.8)

if Φ◦
v ∈ I(s, χ′

v) is the normalized spherical section for any unramified character χ′
v : F

×
v → C× (not

assuming χ′
v|F+×

v
= ηnv ).

If L is a OFv Hermitian lattice of rank m, and if L admits a basis with Gram matrix T (allowing

arbitrary T ∈ Hermm(F
+
v ) with detT ̸= 0 again), we write Den(X,L)n := Den(X,T )n and similarly

Den∗(X,L)n := Den∗(X,T )n. We have

Den∗(X,L)n = (q2s0v X−1/2)val
′(L)Den(X,L)n (15.5.9)

val′(L) := ⌊val(L)⌋ =

val(L)− 1/2 if Fv/F
+
v is ramified and m is odd

val(L) else.
(15.5.10)

The local densities satisfy a certain cancellation property (which we will use): if L◦ is a self-dual

Hermitian lattice of rank n, then for any non-degenerate Hermitian lattice L and every integer

r ∈ Z (assume r is even if Fv/F
+
v is ramified), we have

Den(X,L⊕ L◦)r+n = Den(X,L)r Den∗(X,L⊕ L◦)r+n = Den∗(X,L)r (15.5.11)

where L ⊕ L◦ is the orthogonal direct sum. This follows from the Cho–Yamauchi type formulas

cited above and the following linear algebra fact: every lattice M ′ ⊆ (L ⊕ L◦) ⊗OFv
Fv satisfying

L◦ ⊆M ′ ⊆M ′∨ admits an orthogonal direct sum decompositionM ′ = L◦⊕M ′′ for some sublattice

M ′′.

15.6. Limits of local Whittaker functions. Take integers m,n with m ≥ 1, set s0 = (n−m)/2,

and set m♭ = m − 1. Take Fv/F
+
v and other notation as in the beginning of Section 15 (allowing

F+
v Archimedean or non-Archimedean).

We consider nonsingular T ∈ Hermm(F
+
v ) of the form T = diag(t, T ♭) where T ♭ ∈ Hermm♭(F+

v )

with T ♭ nonsingular, and we study the local Whittaker function W ∗
T,v(s)

◦
n as t→ 0. The following

limiting identities will be crucial for the proofs of our main local theorems. We collect them here
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for easier comparison between the inert/ramified/split and Archimedean cases. Their proofs will

appear in Part 6.

If F+
v is non-Archimedean and Fv/F

+
v is inert, Proposition 18.5.2 implies

d

ds

∣∣∣∣
s=−1/2

W ∗
T ♭,v

(s)◦n = lim
t→0

(
d

ds

∣∣∣∣
s=0

W ∗
T,v(s)

◦
n + (log |t|F+

v
− log qv)W

∗
T ♭,v

(−1/2)◦n
)

(15.6.1)

if the limit is taken over nonzero t ∈ F+
v with ε(diag(t, T ♭)) = −1.

If F+
v is non-Archimedean and Fv/F

+
v is split, Proposition 18.5.2 implies

d

ds

∣∣∣∣
s=−1/2

W ∗
T ♭,v

(s)◦n = lim
t→0

(
log qv ·W ∗

T,v(0)
◦
n + (log |t|F+

v
− log qv) ·W ∗

T ♭,v
(−1/2)◦n

)
(15.6.2)

if the limit is taken over nonzero t ∈ F+
v .

If F+
v is non-Archimedean and Fv/F

+
v is ramified, Proposition 18.5.2 implies

2
d

ds

∣∣∣∣
s=−1/2

W ∗
T ♭,v

(s)◦n = lim
t→0

(
d

ds

∣∣∣∣
s=0

W ∗
T,v(s)

◦
n + (log |t|F+

v
− log qv) ·W ∗

T ♭,v
(−1/2)◦n

)
(15.6.3)

if the limit is taken over nonzero t ∈ F+
v with ε(diag(t, T ♭)) = −1.

If Fv/F
+
v is C/R, Proposition 19.1.2 gives

d

ds

∣∣∣∣
s=−1/2

W ∗
T ♭,v

(s)◦n = lim
t→0±

(
d

ds

∣∣∣∣
s=0

W ∗
T,v(s)

◦
n + (log |t|F+

v
+ log(4π)− Γ′(1))W ∗

T ♭,v
(−1/2)◦n

)
(15.6.4)

where the sign on 0± is − (resp. +) if T ♭ is positive definite (resp. not positive definite). If

T ♭ ∈ Hermm♭(R) is not positive definite, Proposition 19.1.2 also proves a similar limiting statement

for arbitrary m♭ (i.e. not necessarily m♭ = n− 1).

16. Local functional equations

Let Fv be a degree 2 étale algebra over a local field F+
v of characteristic ̸= 2, with notation d,

∆, ηv, and a 7→ a as above. If F+
v is Archimedean, we also assume Fv/F

+
v is C/R. Fix an integer

m ≥ 0.

Consider a character χv : F
×
v → C× and a nontrivial additive character ψv : F

+ → C× (for the

moment, we do not require χv|F+×
v

= ηnv , and allow χv and ψv to be ramified).

Set χ̌v(a) := χv(a)
−1. There is a local intertwining operator

M(s, χv) : I(s, χv)→ I(−s, χ̌v) (16.0.1)

(where I(s, χv) and I(−s, χ̌v) are degenerate local principal series for U(m,m)) defined by the

integral

M(s, χv)Φv(h) =

∫
N(F+

v )
Φv(w

−1n(b)h, s) dn(b) (16.0.2)

for Re(s) > m/2, with meromorphic continuation to C (e.g. see [KS97] in the non-Archimedean

case).
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Given T ∈ Hermm(F
+
v ), we define the quantity

κT (s, χv, ψv) = χv(−1)mχv(detT )−1|detT |−2s

F+
v
γψv(Fv)

m(m−1)/2ηv(detT )
m−1

·
m−1∏
j=0

ρv(2s+ j −m+ 1, ηjv · χv|F+×
v
, ψv) (16.0.3)

where γψv(Fv) is a Weil index (Section 14.1) and ρv is a local factor as in Tate’s thesis (Section

15.1). This factor is taken from [KS97, §3]44 (see also [HKS96, Proposition 6.3]).

16.1. Non-Archimedean. Suppose F+
v is non-Archimedean (with notation as above). For any

T ∈ Hermm(F
+
v ) with detT ̸= 0 and any standard section Φv of I(s, χv), there is a functional

equation

WT,v(h,−s,M(s, χv)Φv) = κT (s, χv, ψv)WT,v(h, s,Φv) (16.1.1)

as in [KS97, §3, §7].
We next consider spherical Whittaker functions. Assume ψv and χv are unramified. We require

F+
v to be characteristic 0 (because [Shi97, §13] assumes this). With Φ◦

v denoting the normalized

spherical sections of I(s, χv) and I(s, χ̌v), we have

M(s, χv)Φ
◦
v(s) = |∆|

m(m−1)/4

F+
v

m−1∏
j=0

Lv(2s+ j −m+ 1, ηjvχv|F+×
v

)

Lv(2s+m− j, ηjvχv|F+×
v

)
Φ◦
v(−s), (16.1.2)

see [Shi97, Theorem 13.6].45

Now, we further restrict to the situation where χv|F+×
v

= ηnv for some n ∈ Z, with n assumed even

if Fv/F
+
v is ramified. Note χ̌v = χv. Combining (16.1.2) with the identities stated above (including

the relation between Weil indices and epsilon factors in (14.1.3)), a straightforward computation

(omitted) yields the functional equations

W
(∗)
T,v(h,−s)

◦
n = |(detT )∆⌊m/2⌋|−2s

F+
v
ηv((−1)m(m−1)/2 detT )n−m−1W

(∗)
T,v(h, s)

◦
n (16.1.3)

W ∗
T,v(h,−s)◦n = ηv((−1)m(m−1)/2 detT )n−m−1W ∗

T,v(h, s)
◦
n (16.1.4)

with W
(∗)
T,v(h, s)

◦ and W ∗
T,v(h, s)

◦ as in Section 15.3.

Next, assume that Fv/F
+
v is unramified or that F+

v has residue characteristic ̸= 2. If L is a

Hermitian OFv -lattice, we thus have

Den(q2s0v X−1, L)n = ε(L)n−m−1X−val′(L)Den(q2s0v X,L)n (16.1.5)

Den∗(q2s0v X−1, L)n = ε(L)n−m−1Den∗(q2s0v X,L)n (16.1.6)

with val′(L) := ⌊val(L)⌋ as in (15.5.10) (both ε(L) and val(L) were defined in Section 2.2).

In the case where χv|F+×
v

is trivial, these functional equations are essentially [Ike08, Corollary

3.2].

44The factor κT (s, χv, ψv) is given there in the non-Archimedean case, but we will use the same formula in the

Archimedean case. For comparing formulas, note the different convention used to define WT,v and M(s, χv) (ψv

versus ψv and w vs w−1).
45Take ζ = 0 in the notation of loc. cit.. Strictly speaking, the statement there is only for χv|F+×

v
trivial, but the

general case follows from this; see (13.1.10) and the proof of Lemma 13.3.1(3).
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16.2. Archimedean. Suppose Fv/F
+
v is C/R (with notation as above). For any T ∈ Hermm(F

+
v )

with detT ̸= 0 and any standard section Φv of I(s, χv), we have

WT,v(h,−s,M(s, χv)Φv) = κT (s, χv, ψv)WT,v(h, s,Φv). (16.2.1)

This may be deduced, e.g. by combining the non-Archimedean analogue (16.1.1) with the global

functional equation (13.2.6).

In the rest of Section 16.2, we require χv|F+×
v

= ηnv for some n ∈ Z, and let ψv(x) = e2πix. Recall

that we have defined a normalized Archimedean Whittaker function W ∗
T,v(h, s)

◦
n (Section 15.2).

Lemma 16.2.1. For any T ∈ Hermm(F
+
v ) with detT ̸= 0, we have the functional equation

W ∗
T,v(h,−s)◦n = ηv(detT )

n−m−1W ∗
T,v(h, s)

◦
n. (16.2.2)

Proof. By (16.2.1), we must have W ∗
T,v(h,−s)◦n = ηv(detT )

n−m−1f(s)W ∗
T,v(h, s)

◦
n for some mero-

morphic factor f(s) which is independent of T . When T is positive definite, we have f(s) = 1 (see

Section 15.2), so we obtain the claimed functional equation for all T ∈ Hermm(F
+
v ) with detT ̸= 0.

Note that ηv is simply the sign character sgn(−). □

Recall that Φ
(n)
v ∈ I(s, χv) is our notation for a certain scalar weight standard section, as in

Section 13.2. For verifying the next lemma, it may be helpful to recall the relation between local

epsilon factors ϵv(−) and Weil indices γv(−) (Section 14.1).

Lemma 16.2.2. We have

M(s, χv)Φ
(n)
v (s) (16.2.3)

=

m−1∏
j=0

Lv(2s+ j −m+ 1, ηn+jv )Γ(−s− s0 + n− j)
ϵv(2s+ j −m+ 1, ηn+jv , ψv)Lv(−2s− j +m, ηn+jv )Γ(s− s0 + n− j)


·(−1)nmim(m−1)/2π2msΦ(n)

v (−s)

with s0 = (n−m)/2 as above.

Proof. A priori, the displayed identity holds up to some meromorphic scale factor. We may compute

this scale factor by combining (16.2.1) and Lemma 16.2.1 (take T = 1m). □

Remark 16.2.3. Lemma 16.2.2 should be a reformulation (with alternative proof) of a case of

[Shi82, (1.31)] (translating into Shimura’s setup via (13.2.13)). Shimura’s computation in loc. cit.

implies

M(s, χv)Φ
(n)
v (s) =

 i−mn(2π)m2
π−m(m−1)/2

2m(m−1)/2+2ms

m−1∏
j=0

Γ(2s− j)
Γ(s− s0 + n− j)Γ(s− s0 − j)

Φ(n)
v (−s).

(16.2.4)

Similarly, the functional equation in Lemma 16.2.1 should follow from [Shi82, Theorem 4.2, (4.34.K)]

(alternative proof) after some rearranging.

For our later calculations, we prefer to use these results as stated in Lemmas 16.2.1 and 16.2.2.
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17. Normalized Fourier coefficients

17.1. Global normalization. With notation as in Section 13.2 and Section 13.3, let F/F+ be a

CM extension of number field. For the moment, we allow 2-adic places of F+ to ramify in F . Write

d (resp. ∆) for the different ideal (resp. discriminant ideal) of F/F+. Let η : F+×\A× → {±1} be
the quadratic character associated with F/F+.

Assume there exists a nontrivial additive character ψ : F+\A → C× such ψv is unramified for

every non-Archimedean v and ψv(x) = e2πix at every Archimedean place. Fix such a ψ. Fix integers

m and n with m ≥ 0, with s0 := (n −m)/2 as above. If any non-Archimedean places of F+ are

ramified in F , we assume n is even. Let χ : F×\A×
F → C× be a character satisfying χ|A× = ηn.

To simplify, we assume that χ is unramified at every non-Archimedean place (but see also Remark

15.5.1).

Take the standard section

Φ(n)◦ :=

(⊗
v|∞

Φ(n)
v

)
⊗
(⊗
v<∞

Φ◦
v

)
∈ I(s, χ) (17.1.1)

(scalar weight at Archimedean places and spherical at non-Archimedean places). Form the associ-

ated Eisenstein series E(h, s,Φ(n)◦) and its variants E(z, s,Φ(n)◦)n and Ẽ(a, s,Φ(n)◦)n as in Section

13.2. The Eisenstein series variant Ẽ(a, s,Φ(n)◦)n does not depend on the choice of χ (Remark

14.2.2).

Define the global normalizing factor

Λm(s)
◦
n :=

(
(2π)m(m−1)/2

(−2πi)nm
πm(−s+s0)

)[F+:Q]

|NF+/Q(∆)|m(m−1)/4|NF+/Q(∆
⌊m/2⌋)|s+s0

·

m−1∏
j=0

Γ(s− s0 + n− j)[F+:Q] · L(2s+m− j, ηj+n)

 . (17.1.2)

We define the normalized Eisenstein series and its variants

E∗(h, s)◦n := Λm(s)
◦
nE(h, s,Φ(n)◦) (17.1.3)

E∗(z, s)◦n := Λm(s)
◦
nE(z, s,Φ(n)◦)n Ẽ∗(a, s)◦n := Λm(s)

◦
nẼ(a, s,Φ(n)◦)n (17.1.4)

where h ∈ U(m,m)(A) and z ∈ Hm and a ∈ GLm(AF ). For T ∈ Hermm(F
+), we similarly define

E∗
T (h, s)

◦
n := Λm(s)

◦
nET (h, s,Φ

(n)◦) (17.1.5)

E∗
T (y, s)

◦
n := Λm(s)

◦
nET (y, s,Φ

(n)◦)n Ẽ∗
T (a, s)

◦
n := Λm(s)

◦
nẼT (a, s,Φ

(n)◦)n (17.1.6)

The latter two are normalized Fourier coefficients.

Given any T ∈ Hermm(F
+) with detT ̸= 0, the local normalizing factors from Sections 15.2 and

15.3 satisfy

Λm(s)
◦
n :=

∏
v

ΛT,v(s)
◦
n (17.1.7)
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where the product (over all places v of F+) is convergent for Re(s) > 0. For such T , we have

factorizations into (normalized) local Whitaker functions

E∗
T (h, s)

◦
n =

∏
v

W ∗
T,v(hv, s)

◦
n Ẽ∗

T (a, s)
◦
n =

∏
v

W̃ ∗
T,v(av, s)

◦
n (17.1.8)

where all but finitely many factors are identically equal to 1 (as functions of s) for fixed T , h, and

n.

Lemma 17.1.1. We have

E∗(h,−s)◦n = (−1)m(m−1)(n−m−1)[F+:Q]/2E∗(h, s)◦n (17.1.9)

Proof. Given T ∈ Hermm(F
+) with detT ̸= 0, the local functional equations (Section 16) and the

factorization from (17.1.8) imply

E∗
T (h,−s)◦n = (−1)m(m−1)(n−m−1)[F+:Q]/2E∗

T (h, s)
◦
n. (17.1.10)

The global functional equation (13.2.6) implies that E∗(h,−s)◦n = f(s)E∗(h, s)◦n for some mero-

morphic function f(s) (temporary notation) independent of T . There exists T with detT ̸= 0 and

E∗
T (h, s)

◦
n not identically zero (e.g. T = 1m; this follows from Section 15). So f(s) is identically 1

and (17.1.10) holds for all T ∈ Hermm(F
+). □

17.2. Singular Fourier coefficients. Retain notation and assumptions from Section 17.1. In this

section, the main result is Corollary 17.2.2 on singular Fourier terms of corank 1.

We use various subscripts to emphasizem-dependence (in the implicit U(m,m)). For example, we

write Φ◦
m,v rather than just Φ◦

v for non-Archimedean v (resp. Φ
(n)
m,v instead of Φ

(n)
v for Archimedean

v), similarly Φ
(n)◦
m instead of Φ(n)◦ for the global standard section from Section 17.1, also Mm(s, χ)

instead of M(s, χ) for the intertwining operator, etc..

Suppose m ≥ 1 and set m♭ = m − 1. Recall the operators µm∗
m♭ (s, χ), Mm(s, χ), Mm♭(s, χ) and

Um
m♭(s, χ) as in Section 13.4.
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Lemma 17.2.1. We have

µm∗
m♭ (s, χ)Φ

(n)◦
m (s) = Φ

(n)◦
m♭ (s+ 1/2) (17.2.1)

Um
m♭(s, χ)Φ

(n)◦
m (s) = (−1)eΛm♭(s− 1/2)◦nΛm(−s)◦n

Λm(s)◦nΛm♭(−s+ 1/2)◦n
Φ
(n)◦
m♭ (s− 1/2) (17.2.2)

Mm(s, χ)Φ
(n)◦
m (s) = |NF+/Q(∆)|−m(m−1)/4((−1)nmim(m−1)/2π2ms)[F

+:Q] (17.2.3)

·

m−1∏
j=0

L(2s+ j −m+ 1, ηn+j)

L(2s+m− j, ηn+j)


·

∏
v|∞

m−1∏
j=0

Lv(2s+ j −m+ 1, ηn+jv )

ϵv(2s+ j −m+ 1, ηn+jv , ψv)Lv(−2s− j +m, ηn+jv )


·

m−1∏
j=0

Γ(−s− s0 + n− j)
Γ(s− s0 + n− j)

[F+:Q]

·Φ(n)◦
m (−s),

allowing m = 0 for in Mm(s, χ) formula, and where

e := (m(m− 1)(n−m− 1)/2−m♭(m♭ − 1)(n−m♭ − 1)/2)[F+ : Q]

(temporary notation).

Proof. Each identity holds a priori up to a meromorphic scale factor. We may compute this scale

factor by evaluating both sides at 1 ∈ U(m♭,m♭) or 1 ∈ U(m,m) as appropriate.

The identity for µm∗
m♭ (s, χ) is then clear. For Mm(s, χ), the identity follows directly upon com-

bining (16.1.2) and (16.2.3).

Define the temporary notation αm(s)n for the meromorphic function (in the lemma statement)

satisfying Mm(s, χ)Φ
(n)◦
m (s) = αm(s)nΦ

(n)◦
m (−s). By (13.4.6)), proving the claimed identity for

Um
m♭(s, χ) is equivalent to showing

αm(s)n
αm♭(s− 1/2)n

= (−1)eΛm♭(s− 1/2)◦nΛm(−s)◦n
Λm(s)◦nΛm♭(−s+ 1/2)◦n

(17.2.4)

with e as in the lemma statement. This may be computed explicitly as follows. Some rearranging

yields

Λm♭(s− 1/2)◦nΛm(−s)◦n
Λm(s)◦nΛm♭(−s+ 1/2)◦n

= (π2msπ(−2s+1)m♭
)[F

+:Q]|NF+/Q(∆
⌊m/2⌋)|−2s|NF+/Q(∆

⌊m♭/2⌋)|2s−1

·Γ(s− s0 + n)−[F+:Q]Γ(−s− s0 + n−m+ 1)[F
+:Q]

·L(2s, ηm+n)L(2s+m, ηn)−1L(2s+m− 1, ηn+1)−1

·L(−2s+ 1, ηm+n+1).
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and

αm(s)n
αm♭(s− 1/2)n

= |NF+/Q(∆)|−(m−1)/2((−1)nim−1π2ms−2m♭(s−1/2))[F
+:Q]

·L(2s, ηn+m+1) · L(2s+m, ηn)−1L(2s+m− 1, ηn+1)−1L(2s, ηn+m)

·

∏
v|∞

Lv(2s, η
n+m+1
v )

ϵv(2s, η
n+m+1
v , ψv)Lv(−2s+ 1, ηn+m+1

v )


·Γ(−s− s0 + n−m+ 1)[F

+:Q]Γ(s− s0 + n)−[F+:Q].

We then use the global functional equation Λ(s, ηn+m+1) = ϵ(s, ηn+m+1)Λ(1−s, ηn+m+1) (notation

as in Section 15.1). Recall the relation between Weil indices and epsilon factors (Section 14.1), the

global product formula
∏
v γψv

(Fv) = 1 for Weil indices, and the equality γψv(C) = i. Recall also

that we have assumed n even if ∆ ̸= 1. Combining these facts with some casework (which we omit)

on m, n, ∆ gives the claim. □

Corollary 17.2.2. Consider any a = diag(a#, a♭) ∈ GLm(AF ) with a# ∈ GL1(AF ) and a♭ ∈
GLm♭(AF ). For any T ∈ Hermm(F

+) with rankT = m − 1 and T = diag(0, T ♭) being block

diagonal with detT ♭ ̸= 0, we have

Ẽ∗
T (a, s)

◦
n = | det a#|s−s0F

Λm(s)
◦
n

Λm♭(s+ 1/2)◦n
Ẽ∗
T ♭(a

♭, s+ 1/2)◦n

+(−1)e|det a#|−s−s0F

Λm(−s)◦n
Λm♭(−s+ 1/2)◦n

Ẽ∗
T ♭(a

♭, s− 1/2)◦n

with constant e as in Lemma 17.2.1.

Proof. This follows immediately from Lemma 17.2.1, (13.4.3), and the definition of the normalized

Fourier coefficients Ẽ∗
T (a, s)

◦
n and Ẽ∗

T ♭(a
♭, s) (Section 17.1). □

Remark 17.2.3. In the situation of Corollary 17.2.2, the functional equation

Ẽ∗
T (a, s)

◦
n = (−1)m(m−1)(n−m−1)[F+:Q]/2Ẽ∗

T (a,−s)◦n (17.2.5)

is a visible consequence of the identity Ẽ∗
T ♭(a

♭, s)◦n = (−1)m♭(m♭−1)(n−m♭−1)[F+:Q]/2Ẽ∗
T ♭(a

♭,−s)◦n.
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Part 6. Local identities

18. Non-Archimedean local identity

Let F0 be a non-Archimedean local field of characteristic 0, residue cardinality q, and residue

characteristic p. Let F be a finite étale F0-algebra of degree 2. We use notation F̆ and F̆0 as in

Part 2 (there with F0 = Qp), so that [F̆ : F̆0] = 1 (resp. [F̆ : F̆0] = 2) if F/F0 is unramified (resp.

ramified).

Notation on Hermitian lattices from Section 2.2 will be used freely. For a non-degenerate Hermit-

ian OF -lattice L, we use the shorthand val′(L) := ⌊val(L)⌋ ∈ Z≥0, as well as val
′(x) := ⌊val(x)⌋ for

any x ∈ L (i.e. val′(L) = val(L)−1/2 if F/F0 is ramified and L has odd rank, and val′(L) = val(L)

otherwise). Fix an integer n ≥ 1, and assume n is even if F/F0 is ramified.

If F0 = Qp, we form the associated Rapoport–Zink space N := N (n− 1, 1) (Section 5.1). Recall

the space of local special quasi-homomorphisms W ⊆ V (Section 5.2). Recall that W and V are

non-degenerate Hermitian F -modules of rank n if F/Qp is nonsplit (resp. rank n− 1 and rank n is

F/Qp is split). Recall ε(V) = −1 if F/Qp is nonsplit (resp. ε(V) = 1 if F/Qp is split).

18.1. Statement of identity. We first define the geometric side of our main local identity, taking

F0 = Qp. We also assume p ̸= 2 if F/Qp is nonsplit. Let L
♭ ⊆W be any non-degenerate Hermitian

OF -lattice of rank n − 1. Form the associated local special cycle Z(L♭) ⊆ N . Recall that the flat

part Z(L♭)H ⊆ Z(L♭) decomposes into quasi-canonical lifting cycles Z(M ♭)◦ for certain latticesM ♭

(Proposition 7.3.1). Recall also the derived vertical local special cycle LZ(L♭)V ∈ grn−1
N K ′

0(Z(L♭))Q
(Section 5.5).

Definition 18.1.1. Given a non-degenerate Hermitian OF -lattice L♭ ⊆ W of rank n − 1, the

associated local intersection number is

Int(L♭)n := IntH (L♭)n + IntV (L♭)n (18.1.1)

where

IntH (L♭)n :=
∑

L♭⊆M♭⊆M♭∗

t(M♭)≤1

IntH (M ♭)◦n (18.1.2)

with the sum running over full rank lattices M ♭ ⊆ L♭F , where

IntH (M ♭)◦n := 2 degZ(M ♭)◦ · δtau(val′(M ♭)) (18.1.3)

for any non-degenerate integral lattice M ♭ ⊆W with t(M ♭) ≤ 1, and where

IntV (L♭)n := 2[F̆ : Q̆p]
−1 degk(

LZ(L♭)V · E∨). (18.1.4)

We previously related these local intersection numbers with global intersection numbers (end of

Sections 11.8 and 11.9). We are now using local notation, suppressing the p of loc. cit..

The quantity

degZ(M ♭)◦ =

[F̆ : Q̆p]p
val′(M♭)(1− η(p)p−1) if val′(M ♭) ≥ 1

[F̆ : Q̆p] if val′(M ♭) = 0
(18.1.5)
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is the degree of the adic finite flat morphism Z(M ♭)◦ → Spf OF̆ , where η(p) := −1, 0, 1 in the

inert, ramified, and split cases respectively (see (7.2.1); the extra factor of [F̆ : F̆0] accounts for

the two components of Z(M ♭)◦ when F/F0 is ramified, see (7.3.1)). Recall that δtau(s) is the

“local change of tautological height” defined in (7.2.7), and recall that E∨ is the dual tautological

bundle on N (Definition 5.1.9). In (18.1.4), we understand E∨ = [ON ] − [E ] ∈ K ′
0(N ) so that

LZ(L♭)V · E∨ ∈ FnNK
′
0(Z(L♭)k)Q. For L♭ as above, recall that Z(L♭)k is a scheme proper over

Spec k (Lemma 11.7.3), so there is a degree map degk : F
n
NK

′
0(Z(L♭)k)→ Z.

We refer to IntH (L♭)n as the “horizontal part” of the local intersection number (coming from

the flat part Z(L♭)H ) and we refer to IntV (L♭)n as the “vertical part” of the local intersection

number (coming from Z(L♭)k, supported in positive characteristic).

We next define the automorphic side of our main local identity. For this, we allow F0 to be an

arbitrary finite extension of Qp (allowing p = 2 if F/F0 is unramified). If L♭ is a non-degenerate

Hermitian OF -lattice of rank n− 1, we set

∂Den∗(L♭)n := −2[F̆ : F̆0]
d

dX

∣∣∣∣
X=1

Den∗(q2X,L♭)n (18.1.6)

where Den∗(X,L♭)n ∈ Z[1/q][X,X−1/2] is a normalized local density (15.5.6). We are abusing

notation as in Remark 15.5.2, i.e. Den∗(q2X,L♭)n means to evaluate Den∗(X,L♭)n at X1/2 being

qX1/2. We also set

Den∗(L♭)n := [F̆ : F̆0] ·Den∗(q2, L♭)n. (18.1.7)

SupposeM ♭ is a non-degenerate integral HermitianOF -lattice of rank n−1 with t(M ♭) ≤ 1. IfM ♭

is maximal integral,46 we set ∂Den∗H (M ♭)◦n := ∂Den∗H (M ♭)n. Otherwise, we define ∂Den∗H (M ♭)◦n
inductively so that the relation

∂Den∗(M ♭)n =
∑

M♭⊆N♭⊆N♭∗

∂Den∗H (N ♭)◦n (18.1.8)

is satisfied (induct on val(M ♭)), where the sum runs over lattices N ♭ ⊆ M ♭
F . Given any non-

degenerate integral Hermitian OF -lattice L♭ of rank n− 1, we then define ∂Den∗V (L♭)n so that the

relation

∂Den∗(L♭) =

( ∑
L♭⊆M♭⊆M♭∗

t(M♭)≤1

∂Den∗H (M ♭)◦n

)
+ ∂Den∗V (L♭)n (18.1.9)

is satisfied, where the sum runs over lattices M ♭ ⊆ L♭F .

Theorem 18.1.2. Suppose F0 = Qp and that p ̸= 2 unless F/Qp is split. For any non-degenerate

Hermitian OF -lattice L♭ ⊆W of rank n− 1, we have

Int(L♭)n = ∂Den∗(L♭)n. (18.1.10)

Moreover, we have

IntH (M ♭)◦n = ∂Den∗H (M ♭)◦n IntV (L♭)n = ∂Den∗V (L♭)n. (18.1.11)

46The symbol ◦ indicates “primitive” here (for quasi-canonical lifting cycles), while ◦ indices “spherical” in Part

5 (Eisenstein series). There is no notation clash as written, but we hope this remark helps to avoid confusion.
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where M ♭ ⊆W is any non-degenerate integral Hermitian OF -lattice of rank n− 1 with t(M ♭) ≤ 1.

On account of the decompositions in (18.1.1), (18.1.2), and (18.1.9), it is clearly enough to prove

the refined identities in (18.1.11). The theorem is also clear if L♭ is not integral, since both sides

of (18.1.10) are zero in this case (the special cycle Z(L♭) will be empty, and Den(X,L♭)n will be

identically zero as discussed in Section 15.4).

We also record a special value formula (as observed in the inert case by Li and Zhang [LZ22a,

Corollary 4.6.1]) for later use. Its proof will appear in Section 18.2.

Lemma 18.1.3. Suppose F0 = Qp and that p ̸= 2 unless F/Qp is split. For any non-degenerate

Hermitian OF -lattice L♭ ⊆W of rank n− 1, we have

degZ(L♭)H = Den∗(L♭)n. (18.1.12)

In the preceding lemma statement, degZ(L♭)H means the degree of the adic finite flat morphism

Z(L♭)H → Spf OF̆ of formal schemes.

18.2. Horizontal identity. We will need Cho–Yamauchi formulas for local densities (unitary

version, as proved in [LZ22a, Theorem 3.5.1] (inert) [FYZ24, Theorem 2.2(3)] (split) [LL22, Lemma

2.15] (ramified)). For this, we allow F0 to be an arbitrary finite extension of Qp (allowing p = 2

if F/F0 is unramified). Then, if L is any non-degenerate Hermitian OF -lattice of rank n (still

assuming n even if F/F0 is ramified), we have

Den(X,L)n =
∑

L⊆M⊆M∗

Xℓ(M/L)Den(X,M)◦n (18.2.1)

Den(X,M)◦n :=

t(M)−1∏
i=0

(1− ηi(ϖ0)q
iX) (18.2.2)

where η(ϖ0) := ηi(ϖ0) := −1, 0, 1 if i is odd (resp. ηi(ϖ0) := 1 if i is even) in the inert, ramified,

split cases respectively, and Den(X,L)n ∈ Z[X] is the local density polynomial normalized as in

Section 15.5. The displayed sum runs over lattices M ⊆ LF .
Suppose L♭ is a Hermitian OF -lattice of rank n − 1 (still assuming n even if F/F0 is rami-

fied). If F/F0 is unramified, we have Den(X,L♭)n = Den(η(ϖ0)q
−1X,L♭)n−1 (15.5.5) and we set

Den(X,L♭)◦n := Den(η(ϖ0)q
−1, L♭)◦n−1 if L♭ is also integral.

If F/F0 is ramified, we have

Den(X,L♭)n =
∑

L♭⊆M♭⊆M♭∗

(q−1X)ℓ(M
♭/L♭)Den(X,M ♭)◦n (18.2.3)

Den(X,M ♭)◦n :=

t(M♭)−3
2∏
i=0

(1− q2iX) (18.2.4)

where the sum runs over lattices M ♭ ⊆ L♭F (may be verified using [LL22, Lemma 2.15]).

If M ♭ is a non-degenerate integral Hermitian OF -lattice of rank n− 1 with t(M ♭) ≤ 1, set

Den∗(M ♭)◦n := [F̆ : F̆0]q
val′(M♭)Den(1,M ♭)◦n (18.2.5)
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We have

[F̆ : F̆0]Den∗(q2, L♭)n = [F̆ : F̆0]Den∗(1, L♭)n =
∑

L♭⊆M♭⊆M♭∗

Den∗(M ♭)◦n (18.2.6)

where the sum runs over lattices M ♭ ⊆ L♭F . The first equality follows from the functional equation

(16.1.6), and the second equality follows from the Cho–Yamauchi formulas (and (15.5.9)). Note

Den∗(M ♭)n = Den∗(M ♭)◦n if M ♭ is maximal integral.

Proof of Lemma 18.1.3. Follows from (18.2.6). Note Den∗(M ♭)◦n = degZ(M ♭)◦ if t(M ♭) ≤ 1, and

Den∗(M ♭)◦n = 0 if t(M ♭) ≥ 2. □

Proposition 18.2.1. Assume F0 = Qp and that p ̸= 2 unless F/Qp is split. For any rank n − 1

non-degenerate Hermitian OF -lattice M ♭ ⊆W with t(M ♭) ≤ 1, we have

IntH (M ♭)◦n = ∂Den∗H (M ♭)◦n (18.2.7)

Proof. By definition, the quantity IntH (M ♭)◦n depends only on val(M ♭). Since t(M ♭) ≤ 1, we may

write M ♭ = L♭′ ⊕ L♭′′ (orthogonal direct sum) where L♭′ is self-dual of rank n − 2 and val(L♭′′) =

val(M ♭) (in the unramified case, this follows upon diagonalizing M ♭; in the ramified case, this

follows from picking a “standard basis” as in [LL22, Lemma 2.12]). Using the cancellation property

of local densities explained in (15.5.11), we thus reduce to the case n = 2 (which we now assume).

By the inductive decompositions in (18.1.2) and (18.1.8), it is enough to show IntH (M ♭)n =

∂Den∗H (M ♭)n (induct on val(M ♭)). We have ∂Den∗(M ♭)n = ∂Den∗H (M ♭)n by construction, since

t(M ♭) ≤ 1 (i.e. compare (18.1.8) and (18.1.9)).

Set b = val′(M ♭). Using the Cho–Yamauchi formulas, we find

Den∗(q2X,M ♭)n = X−b/2
b∑

j=0

(qX)j ∂Den∗(M ♭)n = [F̆ : F̆0]
b∑

j=0

(b− 2j)qj (18.2.8)

in all cases. The preceding formulas are valid even if F0 ̸= Qp (and also valid if p = 2 whenever

F/F0 is unramified), hence why we wrote q instead of p.

We have

IntH (M ♭)n = 2[F̆ : Q̆p]
∑

M♭⊆N♭⊆N♭∗

ps(1− η(p)p−1)δtau(s) (18.2.9)

= −[F̆ : Q̆p]
∑

M♭⊆N♭⊆N♭∗

ps(1− η(p)p−1)

(
s− (1− p−s)(1− η(p))

(1− p−1)(p− η(p))

)
where the sum runs over lattices N ♭ ⊆ M ♭

F , where s := val′(N ♭), and where η(p) := −1, 0, 1 in the

inert, ramified, split cases respectively.

We prove the identity IntH (M ♭)n = ∂Den∗(M ♭)n by induction on b. The case b = 0 is clear, as

both quantities are 0.

Next suppose b ≥ 1 and that M ♭′ (resp. M ♭′′) is a rank one non-degenerate lattice with

val′(M ♭′) = b − 1 (resp. val′(M ♭′′) = b − 2). If b − 2 ≤ 0, set IntH (M ♭′′)n := 0 (in which

case ∂Den∗(M ♭′′)n = 0 as well).
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We have

∂Den∗(M ♭)n − ∂Den∗(M ♭′)n = [F̆ : F̆0](−bqb +
b−1∑
j=0

qj) (18.2.10)

∂Den∗(M ♭)n − ∂Den∗(M ♭′′)n = [F̆ : F̆0](−bqb − bqb−1 + 2
b−1∑
j=0

qj). (18.2.11)

If F/Qp is inert, we find

IntH (M ♭)n − IntH (M ♭′′)n = −[F̆ : Q̆p]p
b(1 + p−1)

(
b− 2

(1− p−b)
(1− p−1)(p+ 1)

)
= [F̆ : Q̆p](−bpb − bpb−1 + 2

b−1∑
j=0

pj). (18.2.12)

If F/Qp is ramified, we find

IntH (M ♭)n − IntH (M ♭′)n = −[F̆ : Q̆p]p
b

(
b− (1− p−b)

(1− p−1)p

)
(18.2.13)

= [F̆ : Q̆p](−bpb +
b−1∑
j=0

pj). (18.2.14)

If F/Qp is split, we find

IntH (M ♭)n − IntH (M ♭′)n = −[F̆ : Q̆p]
b∑

j=0

pj(1− p−1)j (18.2.15)

= [F̆ : Q̆p](−bpb +
b−1∑
j=0

pj). (18.2.16)

This proves the lemma in all cases, by induction on b. □

Corollary 18.2.2. Theorem 18.1.2 holds when n = 2.

Proof. If n = 2, Proposition 18.2.1 shows IntH (L♭)n = ∂Den∗H (L♭)n = ∂Den∗(L♭)n. We have

gr1NK
′
0(Z(L♭)k)Q = 0 because Z(L♭)k is a scheme and because the reduced subscheme Nred ⊆ N is

0-dimensional (a disjoint union of copies of Spec k), see Lemma 5.4.1. Hence IntV (L♭)n = 0 since
LZ(L♭)V ∈ gr1NK

′
0(Z(L♭)k)Q. □

18.3. Induction formula. Throughout Sections 18.3 and 18.5, we allow F0 to be an arbitrary

finite extension of Qp (allowing p = 2 if F/F0 is unramified). We take the following setup for the

rest of of Section 18 (i.e. the notations n, V , L, L′, L′′, L♭, x, x′, and x′′ are all reserved unless

otherwise indicated).

Setup 18.3.1. Let V be a non-degenerate Hermitian F -module of rank n, with pairing (−,−).
Assume n is even if F/F0 is ramified. Let L♭ ⊆ V be a non-degenerate Hermitian OF -lattice

161



of rank n − 1. Let x, x′, x′′ ∈ V be nonzero and orthogonal to L♭ with ⟨x⟩ ⊆ ⟨x′⟩ ⊆ ⟨x′′⟩ and
lengthOF

(⟨x′⟩/⟨x⟩) = lengthOF
(⟨x′′⟩/⟨x′⟩) = 1. Set

L := L♭ ⊕ ⟨x⟩ L′ := L♭ ⊕ ⟨x′⟩ L′′ := L♭ ⊕ ⟨x′′⟩ (18.3.1)

The notation L′′ and x′′ will only appear in our proof of the induction formula (Proposition

18.3.2) for F/F0 split.

Proposition 18.3.2 (Induction formula). If val(x) > amax(L
♭) in the nonsplit cases (resp. if

val(x) > 2amax(L
♭) in the case F/F0 is split), we have

Den(X,L)n =


X2Den(X,L′)n + (1−X)Den(q2X,L♭)n if F/F0 is inert

XDen(X,L′)n + (1−X)Den(q2X,L♭)n if F/F0 is ramified

XDen(X,L′)n +Den(q2X,L♭)n if F/F0 is split.

(18.3.2)

In the inert case, this is [Ter13, Theorem 5.1] (strictly speaking, there is a blanket p ̸= 2

assumption there), which is a unitary analogue of [Kat99, Theorem 2.6(1)] (orthogonal groups);

see also [LZ22a, Proposition 3.7.1] (there stated allowing p = 2) for a statement closer to ours.

Using the Cho–Yamauchi formulas, we give a uniform proof of the inert and ramified cases

(Lemma 18.3.6). Our lower bounds on val(x) are possibly nonsharp (e.g. in the inert case, we only

show the induction formula when val(x) > 2amax(L
♭)) but this makes no difference for the proof of

Theorem 18.1.2, where we will take val(x)→∞ (Proposition 18.5.2).

The case when F/F0 is split is more difficult for us, and the same proof only shows a weaker

version of the induction formula (stated in Lemma 18.3.6), which is insufficient for our purposes.

Extracting the induction formula from this weak version is the subject of Section 18.4.

For the proof of Theorem 18.1.2, only the statement of the induction formula and the definitions

in (18.3.3) and (18.3.4) will be needed.

We first record a few preparatory lemmas. As in Section 2.2, we fix a uniformizer ϖ ∈ OF and

a generator u ∈ OF of the different ideal such that ϖσ = −ϖ and uσ = −u. We say a quantity

stabilizes, e.g. for val(x) > C (for some constant C) if that quantity does not depend on x if

val(x) > C. When F/F0 is nonsplit, given an OF -module M and m ∈ M , we say e.g. that m is

exact ϖe-torsion for e ≥ 0 if ϖem = 0 but ϖe−1m ̸= 0 (and if e = 0, the only exact ϖe-torsion

element is 0). We use similar terminology for OF0-modules and exact ϖe
0-torsion elements, etc..

Lemma 18.3.3. Let M be a non-degenerate integral Hermitian OF -lattice of rank m. Suppose

elements w1, . . . , wr ∈ M have OF -span M . Write T for the associated Gram matrix. Then

t(M) + rank((uT )⊗OF /ϖ) = m.

Proof. If F/F0 is split, the rank continues to make sense because T is Hermitian (e.g. diagonalize

the Hermitian form). In the unramified cases, the lemma follows by diagonalizing the Hermitian

form. In the ramified case, the lemma follows by puttingM into “standard form” (i.e. an orthogonal

direct sum of rank one lattices and rank two hyperbolic lattices) as in [LL22, Definition 2.11]. We

are allowing m even or odd. □

Lemma 18.3.4. Let M be a non-degenerate integral Hermitian OF -lattice of rank m. Suppose

MF =W ′ ⊕W ′′ is an orthogonal decomposition with W ′′ of rank 1.
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(1) We have t(M)− 1 ≤ t(M ∩W ′) ≤ t(M) + 1.

(2) Let M ′ ⊆ W ′ and M ′′ ⊆ W ′′ be the images of M under the projections MF → W ′ and

MF → W ′′. Assume that M ′ and M ′′ are integral and that val(M ′′) > 0. Then we have

t(M) = t(M ′) + 1.

Proof.

(1) The ramified case follows from [LL22, Lemma 2.23(2)]. The inert case when t(M) = 0 is

[LZ22a, Lemma 4.5.1]. The same proof works in general for arbitrary F/F0 in arbitrary

characteristic: select any basis (w1, . . . , wm−1) of N ∩W ′, extend to a basis (w1, . . . , wm)

of M with Gram matrix T , then use the formulas t(M) + rank((uT ) ⊗ OF /ϖ) = m and

t(M ∩W ′) + rank((uT ♭)⊗OF /ϖ) = m− 1.

(2) Let w = [w1, . . . , wm] be any basis of M , and let T = (w,w) be the corresponding Gram

matrix. Let w′ = [w′
1, . . . , w

′
m] be the projection of w toW ′, with Grammatrix T ′ = (w′, w′).

Since val(M ′′) > 0, we see (uT )⊗OF /ϖ = (uT ′)⊗OF /ϖ. Applying Lemma 18.3.3 twice

(once for M and r = m and once for M ′ and r = m) proves the claim. □

Set

DenL♭,x(X)◦n :=
∑

L⊆M⊆M∗

M∩L♭
F=L♭

Xℓ(M/L)Den(X,M)◦n (18.3.3)

DenL♭,x(X)n := Den(X,L)n =
∑

L♭⊆M♭⊆M♭∗

DenM♭,x(X)◦n (18.3.4)

where the first sum runs over latticesM ⊆ V and the second sum runs over latticesM ♭ ⊆ L♭F . Note
that the only dependence on x is on val(x) (since DenL♭,x(X)◦n only depends on the isomorphism

class of the Hermitian lattice L).

Lemma 18.3.5. The polynomial

fx(X) :=


DenL♭,x(X)◦n −X2DenL♭,x′(X)◦n if F/F0 is inert

DenL♭,x(X)◦n −XDenL♭,x′(X)◦n if F/F0 is ramified

DenL♭,x(X)◦n − 2XDenL♭,x′(X)◦n +X2DenL♭,x′′(X)◦n if F/F0 is split

(18.3.5)

(an element of Z[X]) stabilizes for val(x) > 2[F̆ : F̆0]
−1amax(L

♭).

Proof. The notation fx(X) is temporary, used only for this lemma. If F/F0 is split, writeϖ = ϖ1ϖ2

for ϖi ∈ OF with val(ϖ1x) = val(ϖ2x) = val(x) + 1. We may assume x′′ = ϖ−1x in this case.

Note DenL♭,x′(X)◦n = DenL♭,ϖ−1
1 x(X)◦n = DenL♭,ϖ−1

2 x(X)◦n.
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Inspecting (18.3.3) shows

fx(X) =
∑

L⊆M⊆M∗

M∩L♭
F=L♭

ϖ−1x ̸∈M

Xℓ(M/L)Den(X,M)◦n if F/F0 is nonsplit (18.3.6)

fx(X) =
∑

L⊆M⊆M∗

M∩L♭
F=L♭

ϖ−1
1 x ̸∈M

ϖ−1
2 x ̸∈M

Xℓ(M/L)Den(X,M)◦n if F/F0 is split (18.3.7)

where the sums run over lattices M ⊆ V . For each such M , we know L♭ ⊆ M is a saturated

sublattice, hence M = L♭ ⊕ ⟨ξ⟩ (not necessarily orthogonal direct sum) for some ξ ∈ V .

If L♭ is not integral, then the lemma is trivial as the polynomials of the lemma statement are 0.

We assume L♭ is integral for the rest of the proof.

If F/F0 is nonsplit, each lattice M appearing in (18.3.6) is of the form M = L♭ ⊕ ⟨y + ϖ−ex⟩
for a uniquely determined element y ∈ L♭∗/L♭, where e ∈ Z≥0 is such that y ∈ L♭∗/L♭ is of exact

ϖe-torsion. Conversely, an element y ∈ L♭∗/L♭ gives rise to an M appearing in (18.3.6) if and only

if val(y +ϖ−ex) ≥ 0. If val(x) > 2[F̆ : F̆0]
−1amax(L

♭), then val(ϖ−ex) > 0, so val(y +ϖ−ex) ≥ 0

holds if and only if val(y) ≥ 0.

If F/F0 is split, the preceding paragraph holds upon replacing ϖ−e with ϖ−e1
1 ϖ−e2

2 for e1, e2 ∈
Z≥0 such that y ∈ L♭∗/L♭ is of exact ϖe1

1 ϖ
e2
2 -torsion (i.e. ϖe1

1 ϖ
e2
2 y ∈ L♭ but ϖ

e1−1
1 ϖe2

2 ̸∈ L♭ and
ϖe1

1 ϖ
e2−1
2 ̸∈ L♭).

In the previous notation, we thus have

fx(X) =
∑

y∈L♭∗/L♭

val(y)≥0

Xℓ((L♭+⟨y⟩)/L♭)Den(X,M)◦n (18.3.8)

where the sum runs over y, and M = L♭ ⊕ ⟨y +ϖ−ex⟩ in the nonsplit case (resp. M = L♭ ⊕ ⟨y +
ϖ−e1

1 ϖ−e2
2 x⟩ in the split case).

In the notation of (18.3.8), we have t(M) = t(L♭ + ⟨y⟩) + 1 by Lemma 18.3.4(2) (using

val(ϖ−ex) > 0 in the nonsplit case and val(ϖ−e2
1 ϖ−e2

2 x) > 0 in the split case). Hence we have

Den(X,M)◦n =

t(M♭+⟨y⟩)∏
i=0

(1− ηi(ϖ0)q
iX) (18.3.9)

(see definition in (18.2.2)), and now the right-hand side of (18.3.8) clearly depends only on L♭ (and

not on x). □

Lemma 18.3.6. With notation as above, assume val(x) > 2[F̆ : F̆0]
−1amax(L

♭). We have

(1−X)Den(q2X,L♭)n =


Den(X,L)−X2Den(X,L′) if F/F0 is inert

Den(X,L)−XDen(X,L′) if F/F0 is ramified

Den(X,L)− 2XDen(X,L′) +X2Den(X,L′′) if F/F0 is split.

(18.3.10)
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Proof. Combining (18.3.8) and (18.3.9), we find that the right-hand side of (18.3.10) is given by

∑
L♭⊆M♭⊆M♭∗

Xℓ(M♭/L♭)
∑

y∈M♭∗/M♭

val(y)≥0

Xℓ((M♭+⟨y⟩)/M♭)

t(M♭+⟨y⟩)∏
i=0

(1− ηi(ϖ0)q
iX) (18.3.11)

in all cases, where the outer sum runs over lattices M ♭ ⊆ L♭F .
Collecting the terms with M ♭ + ⟨y⟩ = N ♭ for fixed integral lattices N ♭ ⊆ L♭F , we find that

(18.3.11) is equal to

∑
L♭⊆N♭⊆N♭∗

Xℓ(N♭/L♭)

t(N♭)∏
i=0

(1− ηi(ϖ0)q
iX)

∑
L♭⊆M♭⊆N♭

N♭/M♭cyclic

(number of generators of N ♭/M ♭).

where the outer sum runs over lattices N ♭ ⊆ L♭F and the inner sum runs over lattices M ♭. We have∑
L♭⊆M♭⊆N♭

N♭/M♭cyclic

(number of generators of N ♭/M ♭) =
∑

N♭∗⊆M♭∗⊆L♭∗

M♭∗/N♭∗cyclic

(number of generators of M ♭∗/N ♭∗)

= |L♭∗/N ♭∗| = |N ♭/L♭| = qℓ(N
♭/L♭)

so (18.3.11) is equal to

∑
L♭⊆N♭⊆N♭∗

(qX)ℓ(N
♭/L♭)

t(N♭)∏
i=0

(1− ηi(ϖ0)q
iX). (18.3.12)

Inspecting the Cho–Yamauchi formulas (and surrounding discussion) at the beginning of Section

18.2 shows that the displayed expression is equal to (1−X)Den(q2X,L♭)n in all cases (if F/F0 is

ramified, note that t(N ♭) is always odd because N ♭ has rank n− 1, which we have assumed is odd

in the ramified case). □

18.4. More on induction formula: split. Suppose F/F0 is split. To prove the induction formula

(Proposition 18.3.2), it remains only to show that Den(X,L)−XDen(X,L′) stabilizes for val(x) >

2amax(L
♭), as Lemma 18.3.6 then shows (1−X)(Den(X,L)−XDen(X,L′)) = (1−X)Den(q2X,L♭)n.

We define some more notation (only used in Section 18.4). Fix a uniformizer ϖ0 of OF0 , and

consider the elements

ϖ1 = (ϖ0, 1) ϖ2 = (1,−ϖ0) e1 = (1, 0) e2 = (0, 1) (18.4.1)

inOF = OF0×OF0 . Given anOF -moduleM , we setM1 := e1M andM2 := e2M (soM =M1⊕M2).

We similarly write y1 := e1y and y2 := e2y for y ∈ M . If M is a non-degenerate Hermitian OF -
lattice, we set M∗

1 := e2M
∗ and M∗

2 := e1M
∗. If M is moreover integral, the Hermitian pairing

induces an identification M∗
2 /M1

∼= HomOF0
(M∗

1 /M2, F0/OF0).

For integers t ≥ 0, we set

m(t,X) :=

t−1∏
i=0

(1− qiX) (18.4.2)
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so that Den(X,M)◦n = m(t(M), x) for any integral non-degenerate Hermitian OF -lattice M of rank

n. If T is a finite length OF0-module, we set

t0(T ) := dimFq(T ⊗OF0
Fq) ℓ0(T ) := lengthOF0

(T ). (18.4.3)

Lemma 18.4.1. Consider the polynomial

hdiff,x(X) :=
∑

L⊆M⊆M∗

M1∩L♭
F=L♭

1

M2∩L♭
F ̸=L♭

2
M/L is cyclic

ϖ−1
1 x ̸∈M

Xℓ(M/L)m(t(M), X) (18.4.4)

where the sum runs over lattices M ⊆ V (satisfying the displayed conditions). This sum stabilizes

for val(x) > 2amax(L
♭).

Proof. Each lattice M in the sum is of the form M = L + ⟨ξ⟩ for a unique element ξ = y +

ϖ−e1
1 ϖ−e2

2 x ∈ L∗/L with y ∈ L♭∗, such that val(ξ) ≥ 0, and with e1, e2 ∈ Z≥0.

Assume val(x) > 2amax(L
♭). We claim that val(y) ≥ 0 (in the notation above). The additional

conditions on M imply that y1 ∈ L♭∗2 /L♭1 is of exact ϖe1
1 -torsion and that ϖe2

2 y2 ̸∈ L♭. We thus

have e1 ≤ amax(L
♭) and e2 < amax(L

♭), so val(ϖ−e1
1 ϖ−e2

2 x) > 0 when val(x) > 2amax(L
♭). This

implies that val(y) ≥ 0 as well.

Consider the F -linear (non-unitary) automorphism ϕ : V → V which is the identity on L♭F and

sends x 7→ ϖ2x. Then M 7→ ϕ(M) is a bijection from the set of lattices appearing in the sum for

hdiff,x(X) to the set of lattices appearing in the sum for hdiff,ϖ2x(X) (we remind the reader that L

depends on x as well).

In the above setup, an application of Lemma 18.3.4(2) shows t(M) = t(ϕ(M)) = t(L♭+ ⟨y⟩)+ 1.

We also find ℓ(M/L) = ℓ(ϕ(M)/(L♭ ⊕ ⟨ϖ2x⟩)) = ℓ((L♭ + ⟨y⟩)/L♭). This shows hdiff,x(X) =

hdiff,ϖ2x(X) (compare the M term and the ϕ(M) term). This proves the lemma, as the x-

dependence of hdiff,x(X) is only on val(x). □

Lemma 18.4.2. Let T be a finite length OF0-module, and suppose T is ϖe
0-torsion. For any integer

b > e, form the OF0-module A = T ⊕ (ϖ−b
0 OF0/OF0). Consider u = t + w ∈ A with t ∈ T and

w ∈ ϖ−b
0 OF0/OF0 both of exact ϖr

0-torsion. There is a (non-canonical) isomorphism

A/(u) ∼= (T /(t))⊕ (ϖ−b
0 OF0/OF0). (18.4.5)

Proof. This follows from the structure theorem for finitely generated modules over the discrete

valuation ring OF0 . For example, we can select elements e1, . . . , em ∈ T such that T = ⟨e1⟩ ⊕ · · · ⊕
⟨en⟩ and such that t = ϖs

0e1 for some s ≥ 0. The case r = 0 is trivial, so take r ≥ 1. Then r+s ≤ e.
If w′ ∈ ϖ−b

0 OF0/OF0 is such that ϖs
0w

′ = w there is an isomorphism

T ⊕ (ϖ−b
0 OF0/OF0)→ A (18.4.6)

sending e1 7→ e1 + w′, ei 7→ ei for i ≥ 2, and z 7→ z (for any generator z of ϖ−b
0 OF0/OF0). This

isomorphism takes t to t+ w. □

Given a finite torsion cyclic OF0-module N ∼= OF0/ϖ
a
0OF0 , we set ord(N) := a.
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Lemma 18.4.3. Let T be a finite length OF0-module, and assume T is ϖe-torsion for some e ≥ 0.

For any integer b ≥ 0, form the OF0-module Ab := T ⊕ (ϖ−b
0 OF0/OF0). The polynomial

αb :=
∑

cyclic submodules
N⊆Ab

Xord(N)m(t0(Ab/N), X) (18.4.7)

stabilizes for b > e.

Proof. Applying −⊗OF0
Fq to the exact sequence

0→ N → Ab → Ab/N → 0 (18.4.8)

shows

t0(Ab/N) =

t0(Ab) if N ⊆ ϖ0Ab

t0(Ab)− 1 if N ̸⊆ ϖ0Ab
(18.4.9)

for any cyclic submodule N ⊆ Ab. We also have t0(Ab) = t0(T ) + 1 if b > 1.

There is a natural inclusion Ab → Ab+1. For any cyclic submodule N ⊆ Ab, we have

t0(Ab/N) =

t0(Ab+1/N)− 1 if N = ⟨t+ϖ−b
0 ⟩ with t ∈ ϖ0T

t0(Ab+1/N) otherwise
(18.4.10)

where ϖ−b
0 ∈ ϖ−b

0 OF0/OF0 . Assume b > e. Then, in the first case above, the element t ∈ T is

uniquely determined by N (using b > e). The cyclic submodules N ⊆ Ab+1 with N ̸⊆ Ab are of the
form N⟨t+ϖ−b−1

0 ⟩ for a unique t ∈ T .
We thus have

αb+1 − αb (18.4.11)

=
∑
t∈T

N=⟨t+ϖ−b−1
0 ⟩

Xord(N)m(t0(Ab+1/N), X) +
∑
t∈ϖ0T

N=⟨t+ϖ−b
0 ⟩

Xord(N)m(t0(Ab+1/N), X) (18.4.12)

−
∑
t∈ϖ0T

N=⟨t+ϖ−b
0 ⟩

Xord(N)m(t0(Ab/N), X) (18.4.13)

where the sums run over t ∈ T or t ∈ ϖT , as indicated. We compute∑
t∈T

N=⟨t+ϖ−b−1
0 ⟩

Xord(N)m(t0(Ab+1/N), X) = |T |Xb+1m(t0(T ), X) (18.4.14)

where |T | is the cardinality of T . For any integer a ≥ 0, we have the identity m(a+1, X)−m(a, x) =

−qaXm(a,X), so we compute∑
t∈ϖ0T

N=⟨t+ϖ−b
0 ⟩

Xord(N)m(t0(Ab+1/N), X)−
∑
t∈ϖ0T

N=⟨t+ϖ−b
0 ⟩

Xord(N)m(t0(Ab/N), X) (18.4.15)

= −|ϖ0T |qt0(T )Xb+1m(t0(T ), X). (18.4.16)

But the exact sequence

0→ ϖ0T → T → T /ϖ0T → 0 (18.4.17)
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shows that |T | = |ϖ0T |qt0(T ) since t0(T ) = dimFq T /ϖ0T by definition. Substituting into (18.4.11)

shows αb+1 − αb = 0. □

Lemma 18.4.4. The polynomial DenL♭,x(X)◦n −XDenL♭,x′(X)◦n stabilizes for val(x) > 2amax(L
♭).

Proof. As the x′ dependence of DenL♭,x′(X)◦n is only on val(x′), we may assume x′ = ϖ−1
1 x without

loss of generality. Assume val(x) > 2amax(L
♭). The lemma is trivial if L♭ is not integral (the

polynomial is 0), so assume L♭ is integral.

Inspecting (18.3.3) shows that DenL♭,x(X)◦n −XDenL♭,x′(X)◦n is equal to∑
L⊆M⊆M∗

M∩L♭
F=L♭

ϖ−1
1 x̸∈M

Xℓ(M/L)m(t(M), X). (18.4.18)

where the sum runs over lattices M ⊆ V (similar reasoning was used at the beginning of the

proof of Lemma 18.3.5). For each M in the above sum, note that M/L is cyclic (again, L♭ ⊆ M

is a saturated sublattice, so there is a direct sum decomposition M = L♭ ⊕ ⟨ξ⟩ (not necessarily

orthogonal) for some ξ ∈ V ). By Lemma 18.4.1, it is enough to show that∑
L⊆M⊆M∗

M1∩L♭
F=L♭

1
M/L is cyclic

ϖ−1
1 x ̸∈M

Xℓ(M/L)m(t(M), X). (18.4.19)

stabilizes for val(x) > 2amax(L
♭), where the sum runs over lattices M ⊆ V (because the difference

between (18.4.19) and (18.4.18) is (18.4.4)).

We find that (18.4.19) equals∑
L1⊆M1⊆L∗

2

M1∩L♭
F=L♭

1

ϖ−1
1 x1 ̸∈M1

∑
L2⊆M2⊆M∗

1
M2/L2 is cyclic

Xℓ(M/L)m(t(M), X) (18.4.20)

where the outer sum runs over latticesM1 ⊆ V1, the right-most sum runs over latticesM2 ⊆ V2, and
M =M1⊕M2. Note that the latticesM1 always satisfyM1/L1 being cyclic, becauseM1∩L♭F = L♭1
implies M1 = L♭1 ⊕ ⟨y1 +ϖ−e1

1 x⟩ where y1 ∈ L♭∗2 /L♭1 is of exact ϖe1
1 -torsion.

To prove the lemma, it is enough to check that (18.4.20) does not change if x is replaced with

ϖ2x. The set of lattices M1 ⊆ V1 appearing in the outer sum is indexed elements y1 ∈ L♭∗2 /L
♭
1

(since e1 is determined by y1, in the above notation), and hence does not change if x is replaced

by ϖ2x (here using val(x) > amax(L
♭) to ensure M1 ⊂ L∗

2 for any choice of y1). Note also that

ℓ0(M1/L1) = e1 and hence does not change when x is replaced by ϖ2x.

For the rest of the proof, fix an M1 as in the outer sum of (18.4.20). We will show that the inner

sum of (18.4.20) does not change if x is replaced by ϖ2x.

Set A =M∗
1 /L2. The inner sum is

Xℓ0(M1/L1)
∑

cyclic submodules
N⊆A

Xord(N)m(t0(A/N), X). (18.4.21)
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We already discussed that the factor Xℓ0(M1/L1) does not change when x is replaced by ϖ2x. On the

other hand, we have A ∼= HomOF0
(L∗

2/M1, F0/OF0) so A
∼= L∗

2/M1 (non-canonically). If b := val(x)

and T := L♭∗2 /L
♭
1, then Lemma 18.4.2 shows A ∼= (T /⟨y1⟩)⊕ (ϖ−b

0 OF0/OF0), where y1 is associated

to M1 as above (since the submodule (M1/L1) ⊆ L∗
2/L1 is cyclic and generated by y1 + ϖ−e1x1

where y1 is of exact ϖe1
1 -torsion).

Now Lemma 18.4.3 implies that the sum in (18.4.21) does not change if x is replaced by ϖ2x. □

Proof of Proposition 18.3.2 in split case. Assume F/F0 is split. As remarked at the beinning of

Section 18.4, it is enough to show that Den(X,L)−XDen(X,L′) stabilizes for val(x) > 2amax(L
♭).

We have

Den(X,L)−XDen(X,L′) =
∑

L♭⊆M♭⊆M♭∗

DenL♭,x(X)◦n −XDenL♭,x′(X)◦n (18.4.22)

by definition (see (18.3.4)), so Lemma 18.4.4 proves the claimed stabilization. □

18.5. Limits. We continue in the setup of Section 18.3 but now assume ε(V ) = −1 if F/F0 is

nonsplit. Recall also the definitions in (18.3.3) and (18.3.4).

Let M ♭ ⊆ L♭F be any non-degenerate Hermitian OF -lattice of rank n − 1 with t(M ♭) ≤ 1. If

F/F0 is nonsplit, set

∂DenL♭(x)n := −[F̆ : F̆0]
d

dX

∣∣∣∣
X=1

Den(X,L)n ∂DenM♭,H (x)◦n := −[F̆ : F̆0]
d

dX

∣∣∣∣
X=1

DenM♭,x(X)◦n

∂DenL♭,H (x)n :=
∑

L⊆N⊆N∗

N♭=N∩L♭
F

t(N♭)≤1

∂DenN♭,H (x)◦n ∂DenL♭,V (x)n := ∂DenL♭(x)n − ∂DenL♭,H (x)n.

If F/F0 is split, set

DenL♭(x)n := Den(X,L)n

∣∣∣∣
X=1

DenM♭,H (x)◦n := DenM♭,x(X)◦n

∣∣∣∣
X=1

DenL♭,H (x)n :=
∑

L⊆N⊆N∗

N♭=N∩L♭
F

t(N♭)≤1

DenN♭,H (x)◦n DenL♭,V (x)n := DenL♭(x)n −DenL♭,H (x)n.

The above sums run over lattices N ⊆ V (so N ♭ varies). These definitions also apply for any x ̸∈ L♭F
(not necessarily perpendicular to L♭F ), as long as we take L = L♭ + ⟨x⟩.

Lemma 18.5.1. If F/F0 is split, then DenL♭,V (x)n = 0 for all x.

Proof. Inspecting (18.2.2) shows that Den(X,M)◦n = 0 unless M = M∗. Lemma 18.3.4 implies

DenN♭,x(X)◦n|X=1 = 0 unless t(N ♭) ≤ 1, i.e. DenL♭(x)n = DenL♭,H (x). □

Given x ∈ V with (x, x) ̸= 0, we set val′′(x) := val′(x) if F/F0 is not inert (resp. val′′(x) :=

(val(x)− 1)/2 if F/F0 is inert) to save space. We say a limit stabilizes if the argument of the limit

becomes constant.
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Proposition 18.5.2. If F/F0 is nonsplit, we have

∂Den∗(L♭)n = 2[F̆ : F̆0]
−1 lim

x→0

(
∂DenL♭(x′)n − val′′(x)Den∗(L♭)n

)
. (18.5.1)

If F/F0 is split, we have

∂Den∗(L♭)n = lim
x→0

(
DenL♭(x′)n − val(x)Den∗(L♭)n

)
. (18.5.2)

The expressions are 0 if L♭ is not integral, and all limits stabilize for val(x) ≫ 0. If L♭ is integral

and F/F0 is nonsplit (resp. split), then the limits stabilize when val(x) > amax(L
♭) (resp. val(x) >

2amax(L
♭)).

Proof. We emphasize that we are following Setup 18.3.1; in particular, we have x′ → 0 as x → 0.

Assume L♭ is integral (as the lemma is otherwise clear) and assume val(x) > amax(L
♭). The key

input is the induction formula from Proposition 18.3.2.

Case F/F0 is nonsplit: Multiply the induction formula from Proposition 18.3.2 by X−val′(L♭)/2,

and call the resulting expression (∗) (temporary notation). Taking one derivative of (∗) at X = 1

yields

Den∗(L♭)n = ∂DenL♭(x)n − ∂DenL♭(x′)n. (18.5.3)

Here we used Den(1, L)n = Den(1, L′)n = 0 because ε(V ) = −1 causes a sign in the functional

equation (16.1.5). Taking two derivatives of (∗) at X = 1 yields the identity

val′(L♭)∂DenL♭(x)n + [F̆ : F̆0]
d2

dX2

∣∣∣∣
X=1

Den(X,L)n (18.5.4)

= (val′(L♭)− 4[F̆ : F̆0]
−1)∂DenL♭(x′)n + [F̆ : F̆0]

d2

dX2

∣∣∣∣
X=1

Den(X,L′)n + ∂Den∗(L♭)n.

Again using ε(V ) = −1, we apply the functional equation for Den(X,L) (16.1.5) to find

d2

dX2

∣∣∣∣
X=1

Den(X,L)n = (val(L)− 1)
d

dX

∣∣∣∣
X=1

Den(X,L)n (18.5.5)

= −(val(L)− 1)[F̆ : F̆0]
−1∂DenL♭(x)n (18.5.6)

(the second equality is by definition) and similarly for L′. We also have

val′(L♭) = val(L)− 2[F̆ : F̆0]
−1val′′(x)− 1 val(L) = val(L′) + 2[F̆ : F̆0]

−1. (18.5.7)

Substituting all displayed equations into (18.5.4) proves the claim.

Case F/F0 is split: Evaluating the induction formula from Proposition 18.3.2 at X = 1 yields

Den∗(L♭)n = Den(1, L)n −Den(1, L′)n. (18.5.8)

Multiplying both sides of the induction formula by X−val(L♭)/2 and taking one derivative at X = 1,

we find

val(L♭)Den(1, L)n − 2
d

dX

∣∣∣∣
X=1

Den(X,L)n (18.5.9)

= (val(L♭)− 2)Den(1, L′)n − 2
d

dX

∣∣∣∣
X=1

Den(X,L′)n + ∂Den∗(L♭)n.
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The functional equation (16.1.5) implies

2
d

dX

∣∣∣∣
X=1

Den(X,L)n = val(L)Den(1, L)n (18.5.10)

and similarly for L′. We also have

val(L♭) = val(L)− val(x) val(L) = val(L′) + 1. (18.5.11)

Substituting all displayed equations into (18.5.9) proves the claim. □

Corollary 18.5.3. Let M ♭ ⊆ L♭F be any full rank integral lattice with t(M ♭) ≤ 1. If F/F0 is

nonsplit, the following formulas hold.

(1) ∂Den∗V (L♭)n = 2[F̆ : F̆0]
−1 limx→0 ∂DenL♭,V (x)n

(2) ∂Den∗H (L♭)n = 2[F̆ : F̆0]
−1 limx→0

(
∂DenL♭,H (x′)n − val′′(x)Den∗(L♭)n

)
(3) ∂Den∗H (M ♭)◦n = 2[F̆ : F̆0]

−1 limx→0

(
∂DenM♭,H (x′)◦n − val′′(x)Den∗(M ♭)◦n

)
.

If F/F0 is split, the following formulas hold.

(1) ∂Den∗V (L♭)n = limx→0DenL♭,V (x)n

(2) ∂Den∗H (L♭)n = limx→0

(
DenL♭,H (x′)n − val(x)Den∗(L♭)n

)
(3) ∂Den∗H (M ♭)◦n = limx→0

(
DenM♭,H (x′)◦n − val(x)Den∗(M ♭)◦n

)
.

All limits stabilize for val(x) ≫ 0. The expressions (1) and (2) are 0 if L♭ is not integral. If

L♭ is integral and F/F0 is nonsplit (resp. split), then the limits in (1) and (2) stabilize when

val(x) > amax(L
♭) (resp. val(x) > 2amax(M

♭)). If F/F0 is nonsplit (resp. split) , the limits in (3)

stabilizes when val(x) > amax(M
♭) (resp. val(x) > 2amax(M

♭)).

Proof. Denote the result of Proposition 18.5.2 as (0). We have (3) =⇒ (2) (in all cases, nonsplit or

split), by summing over M ♭ containing L♭. We have (0) =⇒ (3) by taking L♭ =M ♭ and inducting

on val(M ♭) (starting with the base cases of M ♭ being maximal integral (still with t(M ♭) ≤ 1), in

which case ∂Den∗(M ♭)n = ∂Den∗H (M ♭)n = ∂Den∗H (M ♭)◦n, and similarly for Den∗(M ♭)n, as well as

∂DenM♭(x′)n (nonsplit) and DenM♭(x′)n (split)). Since (0) = (1) + (2), we conclude that (0) =⇒
(1) as well. □

The following lemma is the geometric counterpart of Corollary 18.5.3(1) (in the special case when

α = LZ(L♭)V for a non-degenerate Hermitian OF -lattice L♭ ⊆W).

Lemma 18.5.4. Take F0 = Q, and assume p ̸= 2 if F/Qp is ramified. Let Z → Spec k be a proper

scheme equipped with a closed immersion Z ↪→ N . Given any α ∈ gr1K
′
0(Z), we have

degk(α · E
∨) = lim

w→0
degk(α ·

LZ(w)) (18.5.12)

where the limit runs over w ∈W. The limit stabilizes for w satisfying Z ⊆ Z(w).

Proof. We may assume F/Qp is nonsplit, as otherwise gr1K
′
0(Z) = 0 (Section 5.4) for dimension

reasons so the lemma is trivial.
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For any fixed w ∈ W, there exists e ≫ 0 such that Z ⊆ Z(pew) (over a quasi-compact base

scheme, pe times any quasi-homomorphism is a homomorphism for e ≫ 0). Hence Z ⊆ Z(w) for

all w ∈W lying in a sufficiently small neighborhood of 0.

Assume w ∈ W is such that Z ⊆ Z(w). Write I(w) ⊆ ON for the ideal sheaf of Z(w)
(recall that Z(w) is a Cartier divisor, see Section 5.5). The lemma now follows from the “linear

invariance” argument in the proof of [LL22, Lemma 2.55(3)] (valid in the inert case as well, using

[How19]). Alternatively, the proof of linear invariance (particularly [How19, Definition 4.2] (inert)

[LL22, Lemma 2.39] (ramified)) exhibits a canonical isomorphism E ⊗ OZ(w) ∼= I(w) ⊗ OZ(w) via

Grothendieck–Messing theory. □

Proof of Theorem 18.1.2. The horizontal part of the theorem was already verified in Proposition

18.2.1, so it remains to show IntV (L♭)n = ∂Den∗V (L♭)n.

If F/Qp is split, then LZ(L♭)V = 0 and so IntV (L♭)n = 0. Applying Corollary 18.5.3(1) with

V = V, we find ∂Den∗V (L♭)n = 0 since DenL♭,V (x)n = 0 for all x (Lemma 18.5.1).

Next assume F/Qp is nonsplit. For any w ∈W not in L♭F , we have degk(
LZ(L♭)V · LZ(w)) =

∂DenL♭,V (w)n by [LZ22a, Theorem 8.2.1] (inert) and [LL22, Theorem 2.7] (the “vertical” parts of

the main results of loc. cit..). Lemma 18.5.4 implies IntV (L♭)n = 2[F̆ : F̆0]
−1 limw→0 ∂DenL♭,V (w)n.

Restricting to w perpendicular to L♭F , the limiting formula in Corollary 18.5.3(1) now implies

IntV (L♭)n = ∂Den∗V (L♭)n. □

Remark 18.5.5. Suppose F0 = Qp, suppose F/Qp is nonsplit, and assume p ̸= 2. Let M ♭ ⊆ V be

a non-degenerate integral OF -lattice of rank n− 1 with t(M ♭) ≤ 1. As above, let Z(M ♭)◦ ⊆ N be

the associated quasi-canonical lifting cycle.

For any nonzero w ∈ V not in M ♭
F , we have degk(Z(M

♭)◦ ∩Z(w)) = ∂DenM♭,H (w)◦n by [KR11,

Proposition 8.4] (inert, see also [LZ22a, Corollary 5.4.6, Theorem 6.1.3]) and [LL22, Corollary 2.46]

(ramified), i.e. the “horizontal” parts of the main results of loc. cit..

The “horizontal part” of our main theorem showed IntH (M ♭)◦n = ∂Den∗H (M ♭)◦n (Proposition

18.2.1). Using also the special value formula in Lemma 18.1.3, our limiting result Corollary 18.5.3(3)

is equivalent to the geometric statement

2 degZ(M ♭)◦ · δtau(val′(M ♭))

= 2[F̆ : Q̆p]
−1 lim

x→0

(
degk(Z(M

♭)◦n ∩ Z(x))− val′′(ϖx) degZ(M ♭)◦
)

(18.5.13)

(limiting over nonzero x perpendicular toM ♭) where δtau(val
′(M ♭)) is the “local change of tautolog-

ical height”, as in (7.2.7) (which is −1/2 times the “local change of Faltings height” δFal(val
′(M ♭))).

To prove our main theorem, we verified (18.5.13) indirectly by the computations in Section 18.2.

Direct computations are also possible.

19. Archimedean local identity

Let V be the non-degenerate C/R Hermitian space of rank n and signature (n− 1, 1).

We freely use notation for the Hermitian symmetric domain D and its special cycles (Section

8.1) as well as the Archimedean local Whittaker functions W ∗
T,∞(s)◦n for T ∈ Hermm(R) (complex
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Hermitian matrices) with detT ̸= 0 (Section 15.2). HereW ∗
T,∞(s)◦n denotes the functionW ∗

T,v(1, s)
◦
n

in the notation of loc. cit..

19.1. Statement of identity. Our main Archimedean local identity (“Archimedean local arith-

metic Siegel–Weil”) is the following.

Theorem 19.1.1. Let x ∈ V m be a m-tuple with nonsingular Gram matrix, and set T = (x, x). If

m ≥ n− 1 or if T is not positive definite, we have∫
D
[ξ(x)] ∧ c1(Ê∨)n−m =

d

ds

∣∣∣∣
s=−s0

W ∗
T,∞(s)◦n. (19.1.1)

where s0 = (n−m)/2.

In Theorem 19.1.1, integration of the current [ξ(x)]∧c1(Ê∨)n−m over D is understood in the sense

described in Section 4.5. The displayed integral is convergent (combine Lemma 8.3.3 and Lemma

8.3.1). The local functional equation (Lemma 16.2.1) implies that the derivative of W ∗
T,∞(s)◦n at

s = s0 and s = −s0 are the same up to a simple sign.

The case m = n of Theorem 19.1.1 is the content of [Liu11, Theorem 4.17] (when translating to

Liu’s notation, recall also that W ∗
T,∞(0)◦n = 0 when m ≤ n for non positive-definite T , as discussed

in Section 15.2). We do not give a new proof of this case. Indeed, we reduce the other cases of

Theorem 19.1.1 to the case m = n by the following limiting result.

Proposition 19.1.2. Let T ♭ ∈ Hermm(R) be a matrix with detT ♭ ̸= 0, assume m ≤ n, and

set s0 = (n − m)/2. Assume that either m = n − 1 or that T ♭ is not positive definite. Given

t = diag(tm+1, . . . , tn) ∈ Hermn−m(R), set T = diag(t, T ♭).

d

ds

∣∣∣∣
s=−s0

W ∗
T ♭,∞(s)◦n = lim

t→0±

(
d

ds

∣∣∣∣
s=0

W ∗
T,∞(s)◦n + (log |t|F+

v
+ log(4π)− Γ′(1))W ∗

T ♭,∞(−s0)◦n
)

(19.1.2)

where |t|F+
v
:= |det t|F+

v
, and where the sign on 0± (meaning all tj have this sign) is− if T ♭ is positive definite

+ else.
(19.1.3)

Remark 19.1.3. In the situation of Proposition 19.1.2, recall

W ∗
T ♭,∞(−s0)◦n =

1 if T ♭ is positive definite

0 else
(19.1.4)

(see Section 15.2). Due to this vanishing, the term (log |t|F+
v
+ log(4π) − Γ′(1)) from Proposition

19.1.2 should not be taken seriously outside the positive definite T ♭ case (especially if m ̸= n− 1).

If T ♭ has signature (p, q) for q ≥ 2, we also have

d

ds

∣∣∣∣
s=−s0

W ∗
T ♭,∞(s)◦n =

d

ds

∣∣∣∣
s=0

W ∗
T,∞(s)◦n = 0 (19.1.5)

for any t ∈ Hermn−m(R) with det t ̸= 0 by [Shi82, Theorem 4.2, (4.34.K)]. Thus Proposition 19.1.2

holds for T ♭ of signature (p, q) when q ≥ 2 (both sides of the identity are 0).
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The proof of the remaining cases of Proposition 19.1.2 will occupy most of the rest of Section 19.

The case of T ♭ having signature (m − 1, 1) is completed in Section 19.4, and the case of positive

definite T ♭ is completed in Section 19.5. We also obtain an explicit formula for both sides of (19.1.1)

when T is positive definite, namely (19.5.4) (the formula is a polynomial in the eigenvalues of T−1).

Once the proposition is proved, Theorem 19.1.1 follows (and is equivalent to the proposition for

any given T ♭, which is the T in Theorem 19.1.1) by the following argument.

Proof of equivalence of Theorem 19.1.1 and Proposition 19.1.2. Let T ♭ be as in Proposition 19.1.2.

We may assume T ♭ has signature (m, 0) or (m−1, 1) by Remark 19.1.3. Suppose x♭ = (x♭1, . . . , x
♭
m) ∈

V m satisfies (x♭, x♭) = T ♭. Given an orthogonal basis x# = (xm+1, . . . , xn) of span(x♭)⊥, set

tj = (xj , xj) for j ≥ m+1, set t = (tm+1, . . . , tn), set x = (xm+1, . . . , xn, x
♭
1, . . . , x

♭
m) ∈ V n, and set

T = (x, x). We have

d

ds

∣∣∣∣
s=0

W ∗
T,∞(s)◦n =

∫
D
[ξ(x)] =

∫
D
[ξ(x♭)] ∧ ω(x#) +

∫
D(x♭)

ξ(x) (19.1.6)

where the first equality is the m = n case of Theorem 19.1.1 (already proved by Liu as cited above)

and the second identity is by definition.

Using the pointwise convergence lima→0 ω(ax) = c1(Ê∨) on D for each x ∈ V (8.2.8), we have

lim
x#→0

∫
D
[ξ(x♭)] ∧ ω(x#) =

∫
D
[ξ(x♭)] ∧ c1(Ê∨)n−m (19.1.7)

(say, where the limit runs over x# = (am+1xm+1, . . . , anxn) as aj → 0 for all j) by dominated

convergence (applying estimate from the proof of Lemma 8.3.1 and convergence from Lemma 8.3.3,

particularly convergence of (8.3.8)).

The closed submanifold D(x♭) ⊆ D is a single point if T ♭ is positive definite (in which case we

assumed m = n− 1), and is empty if T ♭ is not positive definite. We thus have∫
D(x♭)

ξ(x) =

−Ei(4π(xn, xn)) if T ♭ is positive definite

0 else.
(19.1.8)

Recall asymptotics for the function Ei (8.2.2) and recall Γ′(1) = −γ. Recall the special value

formulas from (19.1.4). We substitute into (19.1.6) to obtain∫
D
[ξ(x♭)] ∧ c1(Ê∨)n−m = lim

t→0±

(
d

ds

∣∣∣∣
s=0

W ∗
T,∞(s)◦n + (log |t|F+

v
+ log(4π)− Γ′(1))W ∗

T ♭,∞(−s0)◦n
)

(19.1.9)

(where the sign on 0± is the sign of t, determined by the signature of T ♭) which proves the claimed

equivalence. □

Remark 19.1.4. For any T ∈ Hermm(R) with detT ̸= 0, recall that the (normalized) Archimedean

local Whittaker function W ∗
T,∞(s)◦n satisfies a certain “linear invariance” property, i.e. the local

Whittaker function is unchanged if we replace T by tkTk for any k ∈ U(m) where U(m) is the

usual positive definite unitary group in standard coordinates (see Section 15.2). It is thus enough

to prove Proposition 19.1.2 when T ♭ is diagonal.
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Remark 19.1.5. Using the linear invariance property for Whittaker functions, the limiting relation

in (19.1.9) implies that the quantity ∫
D
[ξ(x♭)] ∧ c1(Ê∨)n−m (19.1.10)

from Theorem 19.1.1 is similarly linearly invariant (i.e. does not change if x♭ is replaced by x♭ · k
for any k ∈ U(m), where x♭ is viewed as a row vector of elements in V ). Stated alternatively,

we observe that the linear invariance result of Liu for
∫
D[ξ(x

♭)] ∧ c1(Ê∨)n−m when m = n [Liu11,

Proposition 4.10] can be used to prove the analogous linear invariance in our setting via limiting,

even before we have proved Theorem 19.1.1 or Proposition 19.1.2.

19.2. Computation when n = 2. Before proving Theorem 19.1.1 via Proposition 19.1.2 in the

later sections, we check the n = 2 case of Theorem 19.1.1 by direct computation (the case n = 1

and m ̸= n is trivial as both sides of the identity are trivially 0). The proof for general n (which

proceeds differently, not relying on the n = 2 computation) begins in Section 19.3 below.

Take n = 2 throughout Section 19.2, and suppose T ∈ R is nonzero. By [Shi82, (1.29) and (3.3)]

(translation via (13.2.13)) and some rearranging, we have the formula

W ∗
T,∞(s)◦n = Γ(s− 1/2)−1|4πT |s−1/2

∫ ∞

0
e−4πTu(u+ 1)s+1/2us−3/2 du (19.2.1)

= 1 + Γ(s− 1/2)−1|4πT |s−1/2

∫ ∞

0
e−4πTu((u+ 1)s+1/2 − 1)us−3/2 du (19.2.2)

if T > 0, where the integrals in (19.2.1) and (19.2.2) are convergent for Re(s) > 1/2 and Re(s) >

−1/2 respectively. We similarly have

W ∗
T,∞(s)◦n = Γ(s− 1/2)−1|4πT |s−1/2

∫ ∞

1
e4πTu(u− 1)s+1/2us−3/2 du (19.2.3)

if T < 0, where displayed integral is convergent for Re(s) > −3/2.

Proposition 19.2.1. Given any nonzero T ∈ R and any x ∈ V with T = (x, x), we have∫
D
ξ(x)c1(Ê∨) = −

d

ds

∣∣∣∣
s=1/2

W ∗
T,∞(s)◦n =

(−4πT )−1 if T > 0

(4πT )−1e4πT − Ei(4πT ) if T < 0.
(19.2.4)

The preceding proposition (proved below) shows that Theorem 19.1.1 holds when n = 2 (the

functional equation implies − d
ds |s=1/2W

∗
T,∞(s)◦n = d

ds |s=−1/2W
∗
T,∞(s)◦n).

Lemma 19.2.2. For any nonzero T ∈ R, we have

− d

ds

∣∣∣∣
s=1/2

W ∗
T,∞(s)◦n =

(−4πT )−1 if T > 0

(4πT )−1e4πT − Ei(4πT ) if T < 0.
(19.2.5)

Proof. Recall that Γ(s)−1 = s + O(s2) near s = 0. The integrals in (19.2.2) and (19.2.3) are

convergent and holomorphic at s = 1/2. Directly evaluating the integrals at s = 1/2 gives the

claimed formulas. □
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Lemma 19.2.3. With x ∈ V and T ∈ R as in the statement of Proposition 19.2.1, we have∫
D
ξ(x)c1(Ê∨) =

(−4πT )−1 if T > 0

(4πT )−1e4πT − Ei(4πT ) if T < 0.
(19.2.6)

Proof. By (8.3.2), we have

c1(Ê∨) =
1

2πi
∂∂(logR(x, z)) =

1

2πi

dz ∧ dz
(1− zz)2

. (19.2.7)

If T > 0, we have∫
D
ξ(x)c1(Ê∨) =

∫
D

∫ ∞

1
e−4πTuzz(1−zz)−1

u−1 du
1

2πi

dz ∧ dz
(1− zz)2

(19.2.8)

= −2
∫ 1

0

∫ ∞

1
e−4πTur2(1−r2)−1

u−1(1− r2)−2r du dr (19.2.9)

= −
∫ ∞

1

∫ ∞

0
e−4πTvuu−1 dv du (19.2.10)

= (−4πT )−1 (19.2.11)

via the change of variables v = r2(1− r2)−1.

If T < 0, we have∫
D
ξ(x)c1(Ê∨) =

∫
D

∫ ∞

1
e4πTu(1−zz)

−1
u−1 du

1

2πi

dz ∧ dz
(1− zz)2

(19.2.12)

= −2
∫ 1

0

∫ ∞

1
e4πTu(1−r

2)−1
u−1(1− r2)−2r du dr (19.2.13)

= −
∫ ∞

1

∫ ∞

1
e4πTvuu−1 dv du (19.2.14)

= (4πT )−1

∫ ∞

1
e4πTuu−2 du (19.2.15)

via the change of variables v = (1− r2)−1. We also have∫ ∞

1
e4πTuu−2 du = e4πT − (4πT ) Ei(4πT ) (19.2.16)

via integration by parts. □

Proof of Proposition 19.2.1. Already proved by direct computation in Lemmas 19.2.2 and 19.2.3.

□

19.3. More on Archimedean local Whittaker functions. We use some special functions stud-

ied by Shimura [Shi82] to describe the Archimedean Whittaker functions W ∗
T,∞(s)◦n from above.

We allow arbitrary n ∈ Z for the moment.

We first recall Shimura’s definitions. Given an integer m ≥ 0, set

Γm(s) = πm(m−1)/2
m−1∏
k=0

Γ(s− k) (19.3.1)
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as in [Shi82, (1.17.K)], where Γ is the usual gamma function. Given Hermitian matrices h, h′, the

notation h > h′ will mean that h− h′ is positive definite. For

α, β ∈ C g ∈ Hermm(R)>0 h ∈ Hermm(R)

z ∈ H′ := {z = x+ iy ∈Mm,m(C) with x, y ∈ Hermm(R) and x > 0}

we set

ξ(g, h;α, β) :=

∫
Hermm(R)

e−2πi tr(hx) det(x+ ig)−α det(x− ig)−β dx (19.3.2)

η(g, h;α, β) :=

∫
Hermm(R)

x>h
x>−h

e− tr(gx) det(x+ h)α−m det(x− h)β−m dx (19.3.3)

ζm(z;α, β) :=

∫
Hermm(R)>0

e− tr(zx) det(x+ 1m)
α−m det(x)β−m dx (19.3.4)

ωm(z;α, β) := Γm(β)
−1 det(z)βζm(z;α, β) (19.3.5)

ζp,q(g;α, β) := e− tr(g)/2

∫
Hermm(R)

x+diag(1p,0)>0
x+diag(0,1q)>0

e− tr(gx) det(x+ diag(1p, 0))
α−m det(x+ diag(0, 1q))

β−m

(19.3.6)

initially defined for Re(α),Re(β) ≫ 0. All implicit measures in the integrals are Euclidean. See

Remark 13.2.1 for the log branch convention.

The special functions ξ, η, ζm, ωm, ζp,q are copied from [Shi82, (1.25), (1.26), (3.2), (3.6), (4.16)],

respectively. Formulas relating ξ and η, relating η and ζm, and relating η and ζp,q are given in

[Shi82, (1.29), (3.3), (4.18)]. These will be used implicitly in our computations below.

Recall that ωm(z;α, β) admits holomorphic continuation to all (z, α, β) ∈ H′ × C2 (by [Shi82,

Theorem 3.1]), and that Γq(α − p)−1Γp(β − q)−1ζp,q(g;α, β) admits holomorphic continuation to

all (α, β), for any g (by [Shi82, Theorem 4.2]). We also recall the special value formula

ωm(z;m,β) = ωm(z; a, 0) = 1 (19.3.7)

for all α, β ∈ C [Shi82, (3.15)].

We will also use the differential operator ∆ := det(∂/∂zj,k) on the space of matrices z = (zj,k)j,k ∈
Mm,m(C) as in [Shi82, (3.10.II)] (also [Liu11, (4-20)]). For any u ∈ Hermm(R)>0, with u

1/2 denoting

its unique positive definite Hermitian square-root, we have the relation

(−1)m∆(e− truz det(uz)−βωm(u
1/2zu1/2;α, β))

= e− truz det(uz)−β det(u)ωm(u
1/2zu1/2;α+ 1, β) (19.3.8)

where ∆ is applied to the z variable, and where both sides are evaluated at z ∈ H′. The preceding

formula is a slight variant of [Shi82, (3.12)] and [Liu11, (4-21)] (and can be verified by similar

reasoning). We will use this formula in its equivalent form

(−1)metruz∆(e− truz det(z)−βωm(u
1/2zu1/2;α, β))

= Γm(β)
−1 det(u)β+1ζm(u

1/2zu1/2;α+ 1, β). (19.3.9)
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Remark 19.3.1.

(1) The special function ξ (which takes multiple arguments) should not be confused with the

Green function from Section 8.2 (which takes one argument), as should be clear from con-

text. The same applies to η the special function (which takes multiple arguments) and η

the quadratic character (which takes one argument).

(2) The definition of ζp,q in [Shi82, (4.16)] has a running assumption that “g is diagonal”, but

we can make the same definition without this diagonal assumption.

(3) Liu also uses these functions but with slightly different normalizations [Liu11, §4A]. We

follow Shimura’s normalizations.

Given T ∈ Hermm(R) with detT ̸= 0, we set (non-standard)

W ∗
T (α, β) := e2π trT 2

m(m−1)π−mβ

(−2πi)m(α−β)Γm(α)|detT |
−α+mξ(1m, T ;α, β) (19.3.10)

for α, β ∈ C initially defined for Re(α),Re(β)≫ 0. We have

W ∗
T,∞(s)◦n =W ∗

T (α, β) when α = s− s0 + n and β = s− s0 (19.3.11)

where s0 = (n−m)/2 (see (13.2.13)).

For any c ∈ GLm(C) such that c1p,q
tc = T (where 1p,q = diag(1p,−1q) ∈ Mm,m(R)), and with

g := tcc, we have

W ∗
T (α, β) = e2π trT (2π)2mβπ−mβΓm(β)

−1| detT |−α+m2m(m−α−β)| detT |α+β−mη(2πg, 1p,q;α, β)

= e2π trTΓm(β)
−1|det 4πT |βζp,q(4πg;α, β). (19.3.12)

When T is positive definite, our conventions imply

W ∗
T (α, β) = ωm(4πg;α, β). (19.3.13)

Lemma 19.3.2. Suppose T ∈ Hermm(R) has detT ̸= 0. If T is positive definite (resp. not

positive definite), the function W ∗
T (α, β) admits holomorphic continuation to all (α, β) ∈ C2 (resp.

for Re(α) > m− 1 and all β). In this region, we have

∂

∂α
W ∗
T (α, β) = 0 (19.3.14)

for β = 0 (resp. β ∈ Z≤0).

Proof. Let T have signature (p, q) and let g be as above. The holomorphic continuation of Γp(β −
q)−1Γq(α − p)−1ζp,q(4πg;α, β) to all (α, β) ∈ C2 (as recalled above from [Shi82, Theorem 4.2])

implies that W ∗
T (α, β) admits holomorphic continuation to the region claimed.

When T is positive definite, (19.3.7) implies (∂/∂α)W ∗
T (α, 0) = 0. If T is not positive definite,

the function Γm(β)
−1Γp(β − q) has a zero at every β ∈ Z≤0, which implies W ∗

T (α, β) = 0 for all

β ∈ Z≤0. Thus (∂/∂α)W
∗
T (α, β) = 0 for all b ∈ Z≤0 in this case. □
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Suppose n ≥ 1 is an integer. For any g = (−4π)−1 diag(a, b) ∈ Hermn(R)>0 with a ∈ Hermn−1(R)<0

and b ∈ R<0, we have (as in [Shi82, (4.25)] and also [Liu11, (4-15)])

e2π tr gζn−1,1(4πg;α, β) (19.3.15)

=

∫
Cn−1

etr(aww
∗)+bw∗wζ1(−b(1 + w∗w);β, α− n+ 1) (19.3.16)

·etr(−au/2)η(−a, u/2;α, β − 1) dw

=

∫
Cn−1

etr(aww
∗)+bw∗wζ1(−b(1 + w∗w);β, α− n+ 1) (19.3.17)

· det(u)α+β−nζn−1(−u1/2au1/2;α, β − 1) dw

with w ∈ Cn−1 viewed as column vectors, with w∗ := tw, with u = 1n−1 + ww∗, with u1/2 the

unique positive definite Hermitian square-root of u, and with dw being the Euclidean measure.

We next specialize (19.3.17) to α = n. We have

eb(1+w
∗w)ζ1(−b(1 + w∗w);β, 1) =

∫ ∞

1
eb(1+w

∗w)xxβ−1 dx. (19.3.18)

Combining (19.3.9) and (19.3.7), we also find

det(u)βζn−1(−u1/2au1/2;n, β − 1) = (−1)n−1e− tr au∆|z=−a(e
− truz det(z)−β+1). (19.3.19)

Hence, we have

(−1)n−1ebΓm−1(β − 1)−1e2π tr gζn−1,1(4πg;n, β) (19.3.20)

=

∫
Cn−1

∫ ∞

1
etr(aww

∗)eb(1+w
∗w)xxβ−1 (19.3.21)

·e− tr(1m−1+ww∗)a∆|z=−a(e
− tr(1m−1+ww∗)z det(z)−β+1) dx dw.

These rearrangements are initially valid for Re(β) ≫ 0, but in fact hold for all β ∈ C by analytic

continuation (see also [Shi82, (3.8)] for estimates on ζ1 and ζn−1 giving convergence).

The next lemma generalizes a calculation of Liu [Liu11, Lemma 4.7], and will be used to re-express

(19.3.21) more explicitly. In the statement and proof below, we adopt the following notation from

[Liu11, Lemma 4.7]: given a matrix u ∈Mn,n(C) and sets I, J ⊆ {1, . . . n} of the same cardinality,

the symbol |uI,J | (resp. |uI,J |) will mean the determinant of the matrix obtained from u by

discarding (resp. keeping) the rows in indexed by I and the columns indexed by J .

Lemma 19.3.3. Given any u ∈Mm,m(C) and z0 ∈ Hermm(R)>0 with z0 diagonal, we have

∆|z=z0(etruz det(z)s) = etruz0 det(z0)
s
m∑
t=0

∑
J={j1<···<jt}
J⊆{1,...,m}

(
t∏

k=1

(s+ k − 1)

)
|g0,J,J |−1|uJ,J | (19.3.22)

for all s ∈ C, where the inner sum runs over all subsets J ⊆ {1, . . . ,m} of size t.

Proof. Observe that (upon fixing u and z0), the expression

e− truz0 det(z0)
−s∆|z=z0(etruz det(z)s) (19.3.23)
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is a polynomial in s. Hence it is enough to prove the lemma holds for all s ∈ Z≥1. The case s = 1 is

given by the proof of [Liu11, Lemma 4.7] via combinatorial calculation. For all s ∈ Z≥1, a similar

calculation shows

e− truz0 det(z0)
−s∆|z=z0(etruz det(z)s) =

m∑
t=0

∑
J={j1<···<jt}
J⊆{1,...,m}

Ns,t · |z0,J,J |−1|uJ,J | (19.3.24)

for all s ∈ Z≥1, where Ns,t is the number of tuples ((σ1, J1), . . . , (σs, Js)) where Ji ⊆ J are disjoint

subsets (possibly empty) with
⋃
Ji = J and each σi is a permutation of Ji. If |Ji| denotes the

cardinality of Ji, then there are
(
t+s−1
s−1

)
possibilities for the tuple (|J1|, . . . , |Js|), and each such tuple

admits t! corresponding tuples ((σ1, J1), . . . , (σs, Js)). Hence Ns,t =
(
t+s−1
s−1

)
t! =

∏t
k=1(s+k−1). □

19.4. Limiting identity: non positive definite T ♭. Take integers m,n ≥ 1, assume m ≤ n,

and set s0 = (n − m)/2. Given a = diag(a1, . . . , an−1) ∈ Hermn−1(R)<0 and b ∈ R<0, set a
♭ =

diag(an−m+1, . . . , an−1) ∈ Hermn−m(R) and

T = (−4π)−1 diag(a,−b) T ♭ = (−4π)−1 diag(a♭,−b)

g = (−4π)−1 diag(a, b) g♭ = (−4π)−1 diag(a♭, b).

We have T, g ∈ Hermn(R) and T ♭, g♭ ∈ Hermm(R).
We have

W ∗
T ♭(α, β) = e2π trT ♭

Γm(β)
−1| det 4πT ♭|βζm−1,1(4πg

♭;α, β)

= eb| det 4πT ♭|βπ−m+1Γ(β)−1Γm−1(β − 1)−1e2π tr g♭ζm−1,1(4πg
♭;α, β)

which implies

∂

∂β
W ∗
T ♭(m,β) (19.4.1)

=

(
d

dβ
Γ(β)−1

)
|det 4πT ♭|βπ−m+1ebΓm−1(β − 1)−1e2π tr g♭ζm−1,1(4πg

♭;m,β)

whenever both sides are evaluated at β ∈ Z≤0.

Equation (19.3.11) and Lemma 19.3.2 imply

d

ds

∣∣∣∣
s=−s0

W ∗
T ♭,∞(s)◦n =

∂

∂β

∣∣∣∣
β=m−n

W ∗
T ♭(m,β). (19.4.2)

Since Γ(s)−1 has residue (−1)n−m(n−m)! at s = m− n, we use (19.4.1) and (19.3.21) to find

d

ds

∣∣∣∣
s=−s0

W ∗
T ♭,∞(s)◦n (19.4.3)

= (−1)n−m(n−m)!| det 4πT ♭|m−n(−π)−m+1 (19.4.4)

·
∫
Cm−1

∫ ∞

1
etr(aww

∗)eb(1+w
∗w)xxm−n−1

·e− tr(1m−1+ww∗)a♭∆|z=−a♭(e
− tr(1m−1+ww∗)z det(z)n−m+1) dx dw.
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Next, we write w = (w1, . . . , wm) and apply Lemma 19.3.3 to find (using det(1 + ww∗) = 1 + w∗w

as in [Shi82, Lemma 2.2])

d

ds

∣∣∣∣
s=−s0

W ∗
T ♭,∞(s)◦n

= (−1)n+1(n−m)!|det 4πT ♭|m−nπ−m+1 det(−a♭)n−m

·
m−1∑
t=0

∑
I={i1<···<it}
I⊆{1,...,m−1}

(m−1−t∏
k=1

(n−m+ k)(ai1 · · · ait)

∫
Cm−1

∫ ∞

1
etr(aww

∗)eb(1+w
∗w)xxm−n−1(1 + wi1wi1 + · · ·+ wit + wit) dx dw

)
= (−1)n+1π−m+1(−b)m−n (19.4.5)

·
m−1∑
t=0

∑
I={i1<···<it}
I⊆{1,...,m−1}

(
(n− 1− t)!(ai1 · · · ait)

∫
Cm−1

∫ ∞

1
etr(aww

∗)eb(1+w
∗w)xxm−n−1(1 + wi1wi1 + · · ·+ wit + wit) dx dw

)
.

We have used exponential decay of the function
∫∞
1 ecxxm−n−1 as c→ −∞ for convergence estimates

(to rearrange integrals). The previous formulas also hold when T ♭,m, g♭, a♭ are replaced by T, n, g, a

(the latter is just the special case m = n).

For the reader’s convenience, we recall the formulas (which will be used below)∫
R2

ec(x
2+y2) dx dy = −πc−1

∫
R2

(x2 + y2)ec(x
2+y2) dx dy = πc−2 (19.4.6)

valid for any c ∈ R<0.

Proof of Proposition 19.1.2 when T ♭ is not positive definite. It is enough to check the case where

T ♭ is diagonal and signature (m − 1, 1), by Remarks 19.1.3 and 19.1.4. Take notation as above.

There is nothing to check when m = n. Otherwise, we may show

lim
ai→0

i=1,...,n−m

d

ds

∣∣∣∣
s=0

W ∗
T,∞(s)◦n =

d

ds

∣∣∣∣
s=−s0

W ∗
T ♭,∞(s)◦n (19.4.7)

via (19.4.5). Indeed, interchanging the limit and integrals (dominated convergence) and integrating

out the variables w1, . . . , wn−m gives the claim (using the left identity in (19.4.6)). □

19.5. Limiting identity: positive definite T ♭. Take any integer n ≥ 1 and set m = n − 1, so

that s0 = (n−m)/2 = 1/2. Given a = diag(a1, . . . , an−1) ∈ Hermn−1(R)<0 and b ∈ R<0, set

T ♭ = (−4π)−1a and T = (−4π)−1 diag(a,−b). (19.5.1)

Equation (19.3.11) and Lemma 19.3.2 imply

d

ds

∣∣∣∣
s=−1/2

W ∗
T ♭,∞(s)◦n = − d

ds

∣∣∣∣
s=1/2

W ∗
T ♭,∞(s)◦n = − ∂

∂β

∣∣∣∣
β=0

W ∗
T ♭(n, β) (19.5.2)
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where the first equality is via the functional equation from Lemma 16.2.1. We have

W ∗
T ♭(n, β) = Γm(β)

−1 det(−a)βζm(−a;n, β) = (−1)me− tr a det(−a)−1∆|z=1m(e
tr az det(z)−β)

(19.5.3)

where the first equality is by (19.3.5) and (19.3.13), and the second equality is by (19.3.9) and

(19.3.7). Applying Lemma 19.3.3 then yields

− ∂

∂β

∣∣∣∣
β=0

W ∗
T ♭(n, β) = det(a)−1

m−1∑
t=0

∑
I={i1<···<it}
I⊆{1,...,m}

(m− 1− t)!(ai1 · · · ait). (19.5.4)

Before proceeding, we define several functions which serve only to aid computation in Section

19.5. Set

dm :=
m∑
t=0

∑
I={i1<···<it}
I⊆{1,...,m}

(m− t)!(ai1 · · · ait) (19.5.5)

qm(x) := (x+ a1)
−1 · · · (x+ am)

−1 (19.5.6)

rm(x) := 1− (x+ a1)
−1 − · · · − (x+ am)

−1 (19.5.7)

hm(x) := q(x)ex
m−1∑
k=0

k∑
t=0

∑
I={i1<···<it}
I⊆{1,...,m}

(m− 1− k)!ai1 · · · aitxk−t (19.5.8)

um(x) :=
m∑
t=0

∑
I={i1<···<it}
I⊆{1,...,m}

(m− t)!ai1 · · · ait(1− (x+ ai1)
−1 − · · · − (x+ ait)

−1) (19.5.9)

fm(x) := qm(x)um(x) (19.5.10)

where dependence on a1, . . . , am is suppressed from notation.

Next, we consider (19.4.5) for the matrix T . Changing variables x 7→ x/b and computing the dw

integral (using (19.4.6)), we find

d

ds

∣∣∣∣
s=0

W ∗
T,∞(s)◦n = −

∫ 1/b

−∞
fm(x)e

xx−1 dx = −Ei(b) +

∫ 1/b

−∞
(1− fm(x))exx−1 dx (19.5.11)

with m = n− 1 as above, and where Ei is the exponential integral function from Section 8.2.

Lemma 19.5.1. We have fm(x) = 1 +O(x) near x = 0.

Proof. In the lemma statement, the variables a1, . . . , am are understood to be fixed (and negative).

Since fm(x) is a rational function of x, it is enough to check fm(0) = 1, i.e. that

m∑
t=0

∑
I={i1<···<it}
I⊆{1,...,m}

(m− t)!a−1
j1
· · · a−1

jm−t
(1− a−1

i1
− · · · − a−1

it
) = 1
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where {j1, . . . , jm−t} = {1, . . . ,m}\{i1, . . . , it}. This holds because the sum telescopes, i.e. for any

given t = 0, . . . ,m− 1, we have

∑
I={i1<···<it}
I⊆{1,...,m}

(m− t)!a−1
j1
· · · a−1

jm−t
=

∑
I′={i′1<···<i′t+1}
I′⊆{1,...,m}

(m− t− 1)!a−1
j′1
· · · a−1

j′m−t−1
(a−1
i′1

+ · · ·+ a−1
i′t

)

where {j′1, . . . , j′m−t−1} = {1, . . . ,m} \ {i′1, . . . , i′t+1}. □

Lemma 19.5.2. We have d
dxhm(x) = (1− fm(x))exx−1.

Proof. We prove this by induction onm. The casem = 0 is clear, as both sides of the identity are 0.

Next, suppose the claim holds for some m. We write fm+1(x), hm+1(x), etc. for the corresponding

functions formed with respect to the tuple (a1, . . . , am, am+1) for any given choice of am+1 ∈ R<0.

Observe that we have an inductive formula

hm+1(x) = hm(x) + qm+1(x)dm (19.5.12)

which implies

d

dx
hm+1(x)−

d

dx
hm(x) = qm+1(x)rm+1(x)e

xdm. (19.5.13)

So it is enough to check fm(x)− fm+1(x) = xqm+1(x)rm+1(x)dm, which is equivalent to checking

(x+ am+1)um(x)− um+1(x) = xrm+1(x)dm. (19.5.14)

To see that this holds, we first compute

um+1 − (am+1um(x)− am+1(x+ am+1)
−1dm)

=
m∑
t=0

∑
I={i1<···<it}
I⊆{1,...,m}

(m+ 1− t)!ai1 · · · ait(1− (x+ ai1)
−1 − · · · − (x+ ait)

−1).

Using the identity am+1(x + am+1)
−1 = 1 − x(x + am+1)

−1, we see that (19.5.14) is equivalent to

the identity

xum(x)− xrm+1(x)dm + (1− x(x+ am+1)
−1)dm (19.5.15)

=

m∑
t=0

∑
I={i1<···<it}
I⊆{1,...,m}

(m+ 1− t)!ai1 · · · ait(1− (x+ ai1)
−1 − · · · − (x+ ait)

−1).
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To see that the latter identity holds, we compute

xum(x)− xrm+1(x)dm + (1− x(x+ am+1)
−1)dm = xum(x)− xrm(x) + dm

=
m∑
t=0

∑
I={i1<···<it}
I⊆{1,...,m}

(m− t)!ai1 · · · ait(m+ 1− t− aj1(x+ aj1)
−1 − · · · − ajm−t(x+ ajm−t)

−1)

=
m∑
t=0

∑
I={i1<···<it}
I⊆{1,...,m}

(m+ 1− t)!ai1 · · · ait

−
m∑
t=0

∑
I={i1<···<it}
I⊆{1,...,m}

(m− t)!ai1 · · · ait(aj1(x+ aj1)
−1 + · · ·+ ajm−t(x+ ajm−t)

−1)

where {j1, . . . , jm−t} = {1, . . . ,m} \ {i1, . . . , it}.
We thus find that (19.5.15) is equivalent to the identity

m∑
t=0

∑
I={i1<···<it}
I⊆{1,...,m}

(m+ 1− t)!ai1 · · · ait((x+ ai1)
−1 + · · ·+ (x+ ait)

−1)

=

m∑
t=0

∑
I={i1<···<it}
I⊆{1,...,m}

(m− t)!ai1 · · · ait(aj1(x+ aj1)
−1 + · · ·+ ajm−t(x+ ajm−t)

−1)

with {j1, . . . , jm−t} as above, and this identity holds because both expressions are equal to

m∑
t=0

∑
I={i1<···<it}
I⊆{1,...,m}

t∑
i=1

(m+ 1− t)!ai1 · · · ait(x+ aii)
−1. □

Proof of Proposition 19.1.2 when T ♭ is positive definite. We may assume T ♭ is diagonal by Remark

19.1.4. With T and T ♭ as above, we find

lim
b→0−

(
d

ds

∣∣∣∣
s=0

W ∗
T,∞(s)◦n + Ei(b)

)
=

∫ 0

−∞
(1− fm(x))exx−1 dx (19.5.16)

via (19.5.11) (and Lemma 19.5.1 for convergence of the integral). The asymptotics for Ei(b) as

b→ 0− (8.2.2) show that it is enough to verify the identity

d

ds

∣∣∣∣
s=−1/2

W ∗
T ♭,∞(s)◦n =

∫ 0

−∞
(1− fm(x))exx−1 dx. (19.5.17)

The left-hand side was computed in (19.5.4) (via (19.5.2)). The right-hand side is equal to hm(0)

(in the notation above) via the explicit antiderivative result from Lemma 19.5.2. Inspecting the

formula for hm(x) shows that the claimed identity holds. □
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Part 7. Siegel–Weil

Our main results (arithmetic Siegel–Weil) are in Section 22. We also give some explicit formulas

for special values (local Siegel–Weil and geometric Siegel–Weil) in Sections 20 and 21. These special

value formulas will be needed as ingredients in the proofs of our arithmetic Siegel–Weil results.

20. Local Siegel–Weil

We need precise information about special values of local Whittaker functions (i.e. local Siegel–

Weil, with explicit constants as in Lemma 20.3.5). The application to uniformization of special

cycles is Lemma 20.4.1. These results do not seem available in the literature in the generality or

explicitness that we need. We omit some computations (but give statements) for arguments which

are presumably routine or similar to arguments available in the literature.

20.1. Volume forms. Given a scheme X which is smooth and equidimensional over a field A,

a volume form (or gauge form) on X will mean a nowhere vanishing (algebraic) differential form

of top degree on X. When X is also affine and A is a local field, the set X(A) has the natural

structure of an A-analytic manifold (in the sense of [Ser06, Part II, Chapter III]). In this case, a

volume form on X defines a Borel measure on X(A) in a standard way (see [Wei82, §2.2]).
We use volume forms to normalize various Haar measures. Let B be a degree 2 étale algebra

over a field A of characteristic ̸= 2, and write b 7→ b for the nontrivial involution on B. Let V be a

B/A Hermitian space which is free of rank n, and set G = U(V ). Fix a nonnegative integer m ≤ n,
and choose translation invariant volume forms α and β on V m and Hermm respectively (viewed as

group schemes over A). The forms α and β have degrees 2nm and m2 respectively.

Consider the moment map

V m Hermm

x (x, x).

T

(20.1.1)

We assume n ≥ m, and write V m
reg ⊆ V m for the open subscheme where det T is invertible. A

tangent space calculation shows that T is smooth when restricted to V m
reg.

Given T ∈ Hermm(A), we write ΩT ⊆ V m for the fiber of the moment map over T . If x ∈ V m(A)

has Gram matrix T = (x, x), then g 7→ g−1 · x defines a morphism ιx : G → ΩT . If detT is

invertible, then a dimension count and tangent space calculation shows that ιx is smooth. If detT

is invertible, if A is a local field, and if Gx ⊆ G denotes the stabilizer of x, then the induced map

Gx(A)\G(A)→ ΩT (A) is a homeomorphism (surjectivity is from Witt’s theorem, and openness is

from the submersivity of G(A)→ ΩT (A), which in turn comes from smoothness of ιx).

Lemma 20.1.1. There exists an algebraic differential form ν on V m
reg of degree m(2n−m) satisfying

the following conditions.

(1) We have α = T ∗(β) ∧ ν.
(2) For the G×ResB/AGLm action on V m

reg given by x 7→ gxh−1 for (g, h) ∈ G×ResF/F+ GLm,

we have (g, h)∗ν = det(thh)m−nν.

(3) For each x ∈ V m
reg, the restriction of ν : Tx(V

m)→ Ga to ker dTx is nonzero.
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(4) For any fixed non-degenerate subspace V ♭ ⊆ V which is free of rank m, and for x ∈ V ♭m
reg (A),

the differential form

det(x, x)m−nι∗xν (20.1.2)

on G is independent of the choice of x. This form is right G-invariant.

Proof. The case m = n is stated in [KR14, §10]. The analogue of that case for orthogonal groups is
discussed in [KRY06, Lemmas 5.3.1, 5.3.2] (there stated and proved for three dimensional quadratic

spaces). The present lemma may be proved by a similar computation.

Part (4) follows from part (2) (where “non-degenerate subspace” means that the restriction of the

Hermitian pairing is non-degenerate). In part (3), x ∈ V m
reg means x ∈ V m

reg(S) for some suppressed

A-scheme S, and we similarly abused notation in part (2). In part (3), the symbol Ga denotes the

additive group scheme. □

20.2. Special value formula. We retain notation from Section 20.1, and specialize to the case

where B/A is the extension Fv/F
+
v where F+

v is a local field of characteristic ̸= 2. If F+
v is

Archimedean, we assume Fv/F
+
v is C/R. We often use subscripts v to emphasize F+

v being a local

field, e.g. we write xv for elements of V m
reg(F

+
v ).

Fix a nontrivial additive character ψv : F
+
v → C×. We write dbv for the self-dual Haar measure

on Hermm(F
+
v ) with respect to the trace pairing (b, c) 7→ ψv(tr(bc)). We also write dxv for the

self-dual Haar measure on V m(F+
v ) with respect to the pairing ψv(trFv/F

+
v
(tr(−,−))).

Fix translation-invariant volume forms α and β as in Section 20.1. These determine Haar mea-

sures dβbv and dαxv on Hermm(F
+
v ) and V m(F+

v ) respectively. Define positive real constants

cv(α,ψv) and cv(β, ψv) such that

dαxv = cv(α,ψv)dxv dβbv = cv(β, ψv)dbv. (20.2.1)

Suppose T ∈ Hermm(F
+
v ) is a matrix with detT ̸= 0. For the rest of Section 20.2, fix a differential

form ν as in Lemma 20.1.1. The restriction of det(T )m−nν to ΩT is a G-invariant volume form on

ΩT , and we write dT,νxv for the resulting measure on ΩT (F
+
v ).

It is known that there exists a constant cT,v (depending on T , the measure dT,νxv, and the

character ψv) such that

WT,v(s0,Φφv) = cT,v

∫
ΩT (F+

v )
φv(xv) dT,νxv (20.2.2)

holds for any Schwartz function φv ∈ S(V m(F+
v )) (see [Ich04, Lemma 5.1, Lemma 5.2]). Here we

set s0 := (n−m)/2 as usual, and Φφv is the Siegel–Weil section associated with φv (Section 14.2).

If ΩT (F
+
v ) = ∅, we thus have WT,v(s0,Φφv) = 0 for all φv.

We may compute the constant cT,v by evaluating (20.2.2) on any nonzero nonnegative Schwartz

function φv. We may take φv to have support which is compact and contained in V m
reg(F

+
v ). The

relation α = T ∗(β) ∧ ν and an “integrate along the fibers of T ” computation (similar to the proof

of [KRY06, Proposition 5.3.3]) gives

cT,v =
γψv(V )−mcv(β, ψv)

cv(α,ψv)
| detT |n−m

F+
v

. (20.2.3)

Here γψv(V ) is the Weil index, as appearing in the Weil representation (Section 14.2).
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Lemma 20.2.1 (Local Siegel–Weil). Let V be a Fv/F
+
v Hermitian space of rank n, and let

ψv : F
+
v → C× be a nontrivial additive character. Fix a non-degenerate subspace V ♭ ⊆ V which is

free of rank m, and fix a Haar measure on U(V ♭⊥)(F+
v ).

There exists a unique Haar measure dgv on G(F+
v ) such that, for any basis xv ∈ V ♭m of V ♭ and

any Schwartz function φv ∈ S(V m(F+
v )), we have

WT,v(s0,Φφv) = γψv(V )−m|detT |n−m
F+
v

∫
Gxv (F

+
v )\G(F+

v )
φv(g

−1
v xv) dgv (20.2.4)

for the corresponding quotient measure, where T = (xv, xv) is the Gram matrix of xv (and where

the Haar measure on Gxv(F
+
v ) is induced by the canonical identification Gxv

∼= U(V ♭⊥)).

Proof. Select any basis xv of V ♭. Set ω1 = det(xv, xv)
m−nι∗xν (temporary notation). We know ω1

does not depend on the choice of xv, by Lemma 20.1.1(4). Let ω2 be a right G-invariant differential

form of degree (n −m)2 on G such what ω1 ∧ ω2 is a nowhere vanishing differential form of top

degree n2 (also right G-invariant). The volume form ω1 ∧ ω2 on G defines a Haar measure on

G(F+
v ). The restriction ω2|Gx is a volume form on Gx (by smoothness of ιx), and defines a Haar

measure on Gxv(F
+
v ). The resulting quotient measure on Gx(F

+
v )\G(F+

v ) ∼= ΩT (F
+
v ) is precisely

the measure for the volume form (detT )m−nν|ΩT
on ΩT .

The lemma then follows from (20.2.2) and the constant calculated in (20.2.3). □

Remark 20.2.2. Consider the situation of Lemma 20.2.1, and suppose V ♭′ ⊆ V is a subspace

which is isomorphic to V ♭ as a Hermitian space. Suppose fv ∈ U(V )(F+
v ) satisfies fv(V

♭) = V ♭′,

and equip U(V ♭′⊥)(F+
v ) with the Haar measure induced from U(V ♭⊥)(F+

v ) via fv. If dgv and dg′v
are the induced Haar measures on G(F+

v ) corresponding to V ♭ and V ♭′ respectively (Lemma 20.2.1),

a change of variables shows dgv = dg′v.

20.3. Explicit Haar measures. For our application to uniformization of special cycles (Section

20.4), we need to explicitly compute the Haar measures from Lemma 20.2.1 in a few cases. The

main result of this subsection is Lemma 20.3.5, and the other lemmas are auxiliary.

We retain notation from Section 20.2. In addition, we assume that F+
v is non-Archimedean and

that ψv is unramified. Letϖ0 be a uniformizer of F+
v . If Fv/F

+
v is ramified, letϖ be a uniformizer of

Fv. Throughout Section 20.3, we assume that Fv/F
+
v is unramified if F+

v has residue characteristic

2.

Let M◦
2 be the rank 2 self-dual lattice described in Section 14.2, and write U(M◦

2 ) for the group

of (unitary) automorphisms of M◦
2 . Let qv be the residue cardinality of F+

v .

The next lemma should be compared with Witt’s theorem for lattices with quadratic forms, as

in [Mor79].

Lemma 20.3.1. For any given c ∈ O×
F+
v
, the group U(M◦

2 ) acts transitively on the set

{x ∈M◦
2 : (x, x) = c}. (20.3.1)

If Fv/F
+
v is inert, the same holds for any c ∈ ϖ0O×

F+
v
.

Proof. Given y ∈M◦
2 , we write ⟨y⟩ ⊆M◦

2 for the submodule generated by y. If Fv/F
+
v is ramified,

we view ϖ as a generator of the different ideal d, and we otherwise view 1 as a generator of d.
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Choose a basis e1, e2 of M◦
2 with Gram matrix given by (14.2.2). In this basis, we also consider the

elements

w′ =

(
0 1

ϵ 0

)
m(a) =

(
a 0

0 a−1

)
n(b) =

(
1 b

0 1

)
ϵ =

−1 if Fv/F
+
v is ramified

1 else

(20.3.2)

of U(M◦
2 ) (acting on column vectors), where a ∈ O×

Fv
and b ∈ OFv satisfies b = −ϵb.

Case 1. Assume Fv/F
+
v is unramified and c ∈ O×

F+
v
. Given any x ∈ M◦

2 with (x, x) = c, there

exists an orthogonal direct sum decomposition M◦
2 = ⟨x⟩ ⊕ ⟨y⟩ for some y ∈ M◦

2 with (y, y) = 1

(by self-dualness). Via this decomposition, the lemma is clear in this case.

Case 2. Assume Fv/F
+
v is ramified and c ∈ O×

F+
v
. Suppose x = a1e1+a2e2 ∈M◦

2 with (x, x) = c.

Without loss of generality, we may assume a2 ∈ O×
Fv

(replace x with w′x if necessary), and we

may further assume a2 = 1 (replace x with m(a2)x). We then have trFv/F
+
v
(ϖ−1a1) = −c. Given

another x′ = a′1e1 + e2 ∈M◦
2 with (x′, x′) = c, we take b = a′1 − a1 and have n(b)x = x′.

Case 3. Assume Fv/F
+
v is inert and c ∈ ϖ0O×

F+
v
. Suppose x = a1e1+a2e2 ∈M◦

2 with (x, x) = c.

Without loss of generality, we may assume a2 = 1 and trFv/F
+
v
(a1) = c (argue as in Case 2). Given

another x′ = a′1e1 + e2 ∈M◦
2 with (x′, x′) = c, we take b = a′ − a and have n(b)x = x′. □

Lemma 20.3.2. Let L be a self-dual hermitian OFv -lattice of rank n. Any isomorphism between

self-dual sublattices of L extends to a (unitary) automorphism of L. The same holds for almost

self-dual lattices of rank n− 1.

Proof. Any self-dual lattice L♭ ⊆ L admits a (unique) orthogonal direct sum decomposition L =

L♭ ⊕ L# where L# is also self-dual. This immediately implies the claim for self-dual sublattices of

L, as self-dual lattices are unique up to isomorphism (for a fixed rank).

Next, assume that Fv/F
+
v is nonsplit and that L♭ ⊆ L is almost self-dual of rank n− 1. There is

an orthogonal direct sum decomposition L♭ = L♭♭⊕L♭#, where L♭♭ is self-dual of rank n−2 and L♭#

is almost self-dual of rank 1. We also have an orthogonal direct sum decomposition L = L♭♭ ⊕ L#

where L# is self-dual of rank 2.

Suppose L♭′ ⊆ L is another almost self-dual lattice of rank n− 1, equipped with an isomorphism

L♭ → L♭′. Applying the result just proved above (in the case of rank n − 2 self-dual sublattices),

we may assume there is an orthogonal decomposition L♭′ = L♭♭ ⊕ L♭′# where L♭# ∼= L♭′#. We thus

reduce to the case n = 2 (the claim for L#), which was proved in Lemma 20.3.1. □

Lemma 20.3.3. Assume Fv/F
+
v is nonsplit, and let V be a Fv/F

+
v Hermitian space of rank n,

and assume that V contains a full-rank self-dual lattice. Suppose L♭ ⊆ V is a non-degnerate lattice

of rank n− 1 satisfying L♭ ⊆ L♭∗ and t(L♭) ≤ 1. Then L♭ is contained in a self-dual lattice of rank

n.

Proof. Recall that t(L♭) := dimk((L
♭∗/L♭)⊗ k) where k is the residue field of OFv .

Let L♭ ⊆ V be as in the lemma statement. The existence of such L♭ implies n ≥ 2. There exists

an orthogonal decomposition L♭ = L♭♭⊕L♭# where L♭♭ is self-dual of rank n− 2. Replacing V with

the orthogonal complement of L♭♭, we reduce immediately to the case n = 2, which we now assume.
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Let ϖ be a uniformizer for Fv (take ϖ = ϖ0 if Fv/F
+
v is inert). We may take V = M◦

2 ⊗ Fv,
where M◦

2 is as in Lemma 20.3.1. We also choose a standard basis e1, e2 for M◦
2 and consider the

elements w′,m(a), n(b) ∈ U(V ) as in the proof of that lemma (now allowing a ∈ F×
v and allowing

b ∈ Fv satisfying b = −ϵb).
The rank one lattice L♭ is generated by an element x = a1e1 + a2e2 for some a1, a2 ∈ Fv (such

that (x, x) is nonzero and lies in OF+
v
). It is enough to check chat the orbit U(V ) ·x intersects M◦

2 .

Acting on x by m(a) ∈ U(V ) for suitable a, we see that it is enough to check the case where a2 = 1

and a1 ∈ F×
v .

If Fv/F
+
v is inert, there exists a′ ∈ OFv such that trFv/F

+
v
(a′) = (x, x) since OFv is self-

dual with respect to the trace pairing. If Fv/F
+
v is ramified, there exists a′ ∈ OFv such that

trFv/F
+
v
(−ϖ−1a′) = (x, x) since OFv and ϖ−1OFv are dual. In either case, we can take b = a′− a1,

and have n(b)x ∈M◦
2 . □

Lemma 20.3.4. In the situations of Lemma 20.3.1, choose x ∈ M◦
2 with (x, x) = c and form

the orthogonal complement lattice x⊥ ⊆ M◦
2 (of rank one). We view both U(M◦

2 ) and U(x⊥) as

subgroups of U(M◦
2 ⊗ Fv).

Viewing U(x⊥) as the norm-one subgroup of O×
Fv
, we have

U(M◦
2 ) ∩ U(x⊥) = {α ∈ O×

Fv
: αα = 1, and α ≡ 1 (mod cdOFv)} ⊆ U(x⊥). (20.3.3)

The subgroup U(M◦
2 ) ∩ U(x⊥) ⊆ U(x⊥) has index

1 if c ∈ O×
F+
v

and Fv/F
+
v is unramified

2 if c ∈ O×
F+
v

and Fv/F
+
v is ramified

qv + 1 if c ∈ ϖ0O×
F+
v

and Fv/F
+
v is inert.

(20.3.4)

Proof. We express elements of U(M◦
2 ⊗ Fv) in a standard basis e1, e2 of M◦

2 , as in the proof of

Lemma 20.3.1.

Case 1. Assume Fv/F
+
v is unramified and c ∈ O×

F+
v
. We then have U(M◦

2 )∩U(x⊥) = U(x⊥), as

follows immediately from an orthogonal direct sum decomposition M◦
2 = ⟨x⟩ ⊕ ⟨y⟩ as in the proof

of Lemma 20.3.1 Case 1.

Case 2. Assume Fv/F
+
v is ramified and c ∈ O×

F+
v
. By the proof of Lemma 20.3.1 Case 2, we may

assume (after conjugating U(M◦
2 ⊗ Fv) by an appropriate element of U(M◦

2 )) that x = a1e1 + e2

for some a1 ∈ OFv , where a1 − a1 = −ϖc. Then a1e1 + e2 is orthogonal to x. For every α ∈ O×
Fv
,

the matrix(
a1 a1

1 1

)(
1 0

0 α

)(
a1 a1

1 1

)−1

= (−ϖc)−1

(
a1 − a1α (−1 + α)a1a1

1− α −a1 + a1α

)
(20.3.5)

lies in U(M◦
2 ) if and only if α ≡ 1 (mod ϖOFv). The claim about index follows from surjectivity

of the reduction modulo ϖ map

{α ∈ O×
Fv

: αα = 1} → {α ∈ F×
qv : α2 = 1} (20.3.6)

(surjectivity is by smoothness of the corresponding unitary group over SpecOF+
v
).
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Case 3. Assume Fv/F
+
v is inert and c ∈ ϖ0O×

F+
v
. By the proof of Lemma 20.3.1 Case 3, we may

assume (after conjugating U(M◦
2 ⊗ Fv) by an appropriate element of U(M◦

2 )) that x = a1e1 + e2

for some a1 ∈ OFv , where a1 + a1 = c. Then −a1e1 + e2 is orthogonal to x. For every α ∈ O×
Fv
, the

matrix (
a1 −a1
1 1

)(
1 0

0 α

)(
a1 −a1
1 1

)−1

= c−1

(
a1 + a1α (1− α)a1a1
1− α a1 + a1α

)
(20.3.7)

lies in U(M◦
2 ) if and only if α ≡ 1 (mod ϖ0OFv). The claim about index follows from surjectivity

of the reduction modulo ϖ0 map

{α ∈ O×
Fv

: αα = 1} → {α ∈ F×
q2v

: αα = 1} (20.3.8)

(surjectivity is by smoothness of the corresponding unitary group over SpecOF+
v
). □

We take a particular choice of Schwartz function φv in the next lemma, which immediately

determines the Haar measure for other choices of φv in Lemma 20.2.1. If mn is odd and Fv/F
+
v is

inert with F+
v of residue characteristic 2, we also require F+

v = Q2 (because of Lemma 14.2.1).

Lemma 20.3.5. Take m = n − 1 or m = n and s0 := (n −m)/2. Assume the rank n Hermitian

space V contains a full-rank self-dual lattice L of full rank. Let Kv ⊆ G = U(V ) be the stabilizer

of such a lattice L.

Consider any xv ∈ V m(F+
v ) with nonsingular Gram matrix T = (xv, xv) ∈ Hermm(F

+
v ). Let 111L

be the characteristic function of L, and set φv = 111⊗mL ∈ S(V m(F+
v )).

Give G(F+
v ) the Haar measure which assigns volume 1 to Kv. Give Gxv(F

+
v ) the Haar measure

which assigns volume 1 to the (unique) maximal open compact subgroup. We have

W ∗
T,v(s0)

◦
n =

1

e

∫
Gxv (F

+
v )\G(F+

v )
φv(g

−1
v xv) dgv e :=

2 if Fv/F
+
v is ramified and m = n− 1

1 else

(20.3.9)

with respect to the associated quotient measure.

Proof. Recall that W ∗
T,v(s)

◦
n is our notation for a certain normalized spherical Whittaker function

(Section 15.3), which is a rescaled version of WT,v(s,Φφv).

In the lemma statement, the stabilizer in G(F+
v ) of any full-rank self-dual lattice in V has volume

1 (because any such stabilizer is conjugate to Kv). To verify (20.3.9), we can (and will) replace L

by any full-rank self-dual lattice in V (by Lemma 20.2.1 again).

Let V ♭ ⊆ V be the rank m subspace spanned by xv. Then V ♭ is free of rank m. By Lemma

20.2.1, it is enough to show (20.3.9) holds for one choice of basis xv for V ♭. We choose xv to be a

basis for a full-rank lattice L♭ ⊆ V ♭ which isself-dual if V ♭ contains a full-rank self-dual lattice

almost self-dual else.
(20.3.10)

Note that V ♭ always contains a full-rank self-dual lattice if Fv/F
+
v is split.

Case 1. Assume L♭ is self-dual. There exists a rank n − m self-dual lattice L# ⊆ V which

is orthogonal to L♭. Form the rank n self-dual lattice L = L♭ ⊕ L#. Any isomorphism between
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self-dual sublattices of L lifts to an element of Kv = U(L) (Lemma 20.3.2). This implies that

gv 7→ φv(g
−1
v xv) is the characteristic function of Gxv(F

+
v )\(Gxv(F

+
v )Kv).

We know that Kv ∩ Gxv(F
+
v ) is the unique maximal open compact subgroup in Gxv(F

+
v ) (i.e.

U(L#)). We compute∫
Gxv (F

+
v )\G(F+

v )
φv(g

−1
v xv) dgv = vol(Gxv(F

+
v )\(Gxv(F

+
v )Kv)) =

vol(Kv)

vol(Kv ∩Gxv(F
+
v ))

= 1.

(20.3.11)

Since T = (xv, xv) and xv is a basis for the self-dual lattice L♭, we also know W ∗
T,v(s0)n = 1 (see

(15.5.7); note that V ♭ containing self-dual lattice means that Fv/F
+
v is unramified if m is odd).

Case 2 Assume that L♭ is almost self-dual and that Fv/F
+
v is ramified. Then n ≥ 2 and

m = n− 1. There is an orthogonal direct sum decomposition L♭ = L♭♭ ⊕L♭#, where L♭♭ is self-dual
of rank m− 1 and L♭# is almost self-dual of rank 1. There exists a rank 2 self-dual lattice L# ⊆ V
which is orthogonal to L♭♭. We can assume L♭# ⊆ L# (Lemma 20.3.3). Form the rank n self-dual

lattice L = L♭♭⊕L#. Any isomorphism between rank n− 1 almost self-dual sublattices in L lifts to

an element of Kv = U(L) (Lemma 20.3.2). This implies that gv 7→ φv(g
−1
v xv) is the characteristic

function of Gxv(F
+
v )\(Gxv(F

+
v )Kv).

We know that Kv ∩Gxv(F
+
v ) = U(L#) ∩Gxv(F

+
v ) has index 2 inside the unique maximal open

compact subgroup of Gxv(F
+
v ) (reduces immediately to the case n = 2, which is Lemma 20.3.4).

We compute∫
Gxv (F

+
v )\G(F+

v )
φv(g

−1
v xv) dgv = vol(Gxv(F

+
v )\(Gxv(F

+
v )Kv)) =

vol(Kv)

vol(Kv ∩Gxv(F
+
v ))

= 2.

(20.3.12)

Since T = (xv, xv) and since xv is a basis for the almost self-dual lattice L♭, we also know

W ∗
T,v(s0)

◦
n = 1 (15.5.7).

Case 3 Assume that L♭ is almost self-dual and that Fv/F
+
v is inert. This implies n ≥ 2 and

m = n − 1. Arguing as in Case 2 (use the same notation; the first paragraph applies verbatim),

again apply Lemma 20.3.2 and Lemma 20.3.4 to compute∫
Gxv (F

+
v )\G(F+

v )
φv(g

−1
v xv) dgv = vol(Gxv(F

+
v )\(Gxv(F

+
v )Kv)) =

vol(Kv)

vol(Kv ∩Gxv(F
+
v ))

= qv + 1.

(20.3.13)

When n = 2, we have Den∗(X,L♭)n = qvX
−1/2 +X1/2 (follows from the relevant Cho–Yamauchi

type formula; see [LZ22a, Example 3.5.2] [FYZ24, Theorem 2.2]). The “cancellation” property for

local densities and self-dual lattices (15.5.11) implies Den∗(X,L♭)n = qvX
−1/2 + X1/2 for n ≥ 2.

We thus have W ∗
T,v(s0)

◦
n = Den∗(1, L♭)n = qv + 1. □

20.4. Uniformization degrees for special cycles. The purpose of this section is to express the

groupoid cardinality of (20.4.4) in terms of special values of local Whittaker functions, with explicit

constants (Lemma 20.4.1). This groupoid has already appeared as a “uniformization degree” for

special cycles (see (11.5.12), also Sections, 11.8, 11.9, and 12.4). This calculation will be needed

for our main arithmetic Siegel–Weil results (Section 22.1).
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Let F/F+ be a CM extension of number fields, with respective adèle rings AF and A and finite

adèle rings AF,f and Af , etc.. As in Part 5, we write v for places of F+ with completions F+
v , and

set Fv := F ⊗F+ F+
v .

Let T ∈ Hermm(F
+) be a Hermitian matrix (with F -coefficients) for any integer m ≥ 0. Set

m♭ := rank(T ). For each place v, select any av ∈ GLm(Fv) such that ta−1
v Ta−1

v = diag(0, T ♭v)

for some T ♭v ∈ Hermm♭(F+
v ) with detT ♭v ̸= 0. For each v, choose any decomposition (Iwasawa

decomposition)

av =

(
1m−m♭ ∗

0 1m♭

)(
a#v 0

0 a♭v

)
kv kv ∈

GLm(OFv) if v is non-Archimedean

U(m) if v is Archimedean,
(20.4.1)

where a#v ∈ GLm−m♭(Fv), a
♭
v ∈ GLm♭(Fv), and U(m) ⊆ GLm(C) is the unitary group for the

standard diagonal positive definite Hermitian pairing.

Let L be a non-degenerate Hermitian OF -lattice of any rank n, set V := L ⊗OF
F , and let

G = U(V ) be the associated unitary group. Set s♭0 := (n −m♭)/2. For any place v of F+
v , we set

Vv := V ⊗F+ F+
v . Let KL,f =

∏
KL,v ⊆ U(V )(Af ) be the adèlic stabilizer of L (i.e. KL,v is the

stabilizer of Lv := L⊗OF+ OF+
v

for every place v <∞ of F+
v ). Fix a place v0 of F+

v (Archimedean

or non-Archimedean). Assume Vv is positive definite for every Archimedean v ̸= v0.

Given xv0f ∈ (V ⊗F+ Av0f )m, we define the “away from v0 special cycle” (compare Sections 11.2

and 12.1)

Z(xv0f ) := {gf ∈ G(Av0f )/Kv0
L,f : g−1

f,vxv ∈ Lv for all non-Archimedean v ̸= v0} (20.4.2)

where xv ∈ V m
v is the v-component of xv0f .

Fix a nontrivial additive character ψv for each place v. Assume ψv is unramified if v < ∞,

and assume ψv(x) = e2πix if F+
v = R. For every non-Archimedean place v ̸= v0, set φv := 111mLv

(characteristic function of Lmv ⊆ V m
v ) and set

φv0f = ⊗v<∞
v ̸=v0

φv ∈ S(V (Av0f )m). (20.4.3)

Similarly set φ♭v := 111m
♭

Lv
∈ S(V (F+

v )m
♭
) for such v.

For every place v of F+
v , let ηv : F

+×
v → {±1} be the quadratic character associated to Fv/F

+
v .

Let χv : F
×
v → C× be any character satisfying χv|F+×

v
= ηnv . Form the associated Siegel–Weil

standard section Φφv ∈ I(s, χv) (Section 14.2) for every place v < ∞ with v ̸= v0. To simplify

slightly, we assume that 2-adic places of F+ are unramified in F for the rest of Section 20.4.

For v <∞ with v ̸= v0, the local Whittaker function variant W̃ ∗
T ♭
v ,v

(a♭v, s,Φφv)n does not depend

on the choice of av or a
♭
v. Indeed, the GLm(OFv)-equivalence class of the Hermitian matrix ta♭vT

♭
va

♭
v

does not depend on the choice of av (follows from the invariance properties in (15.3.4)). For v | ∞
with v ̸= v0, the local Whittaker function variant W̃ ∗

T ♭
v ,v

(a♭v, s)
◦
n similarly does not depend on the

choice of av or a♭v, as the U(m)-equivalence class of ta♭vT
♭
va

♭
v is well-defined (then apply (15.2.4)).

Given any tuple x ∈ V m which spans a non-degenerate Hermitian space, we write Gx ⊆ G for

the stabilizer of x (i.e. the unitary group of the orthogonal complement span(x)⊥ ⊆ V ). We write

xv0f for the image of x in (V ⊗F+ Av0f )m.
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Suppose there exists x ∈ V m with Gram matrix (x, x). Fix such an x, and assume span(x)⊥ is

positive definite at every Archimedean place. Let Kx,v0 ⊆ Gx(F+
v0) be any open compact subgroup,

and assume Kx,v0(F
+
v0) = Gx(F

+
v0) if v0 is Archimedean.

We are mostly interested in applying Lemma 20.4.1 below when m♭ ≥ n− 1 and Lv is self-dual

for all v <∞ with v ̸= v0. The result and proof is simpler in that case, and the lemma may not be

optimal otherwise.

Lemma 20.4.1. Consider the groupoid quotient[
Gx(F

+)\
(
Gx(F

+
v0)/Kx,v0 ×Z(x

v0
f )

)]
. (20.4.4)

The displayed groupoid has finite automorphism groups and finitely many isomorphism classes. Its

groupoid cardinality is

C ·
∏
v|∞
v ̸=v0

W̃ ∗
T ♭
v ,v

(a♭v, s
♭
0)

◦
n

∏
v<∞
v ̸=v0

W̃ ∗
T ♭
v ,v

(a♭v, s
♭
0,Φφ♭

v
)n. (20.4.5)

for some volume constant C ∈ Q>0 which we describe in the following three situations.

(1) Suppose v0 is Archimedean. Assume the local characters (ψv)v and (χv)v arise from global

characters ψ : F+\A→ C× and F×\A×
F → C×. The constant C may depend on V , n, m♭,

F , and the isomorphism classes of the local Hermitian lattices {Lv}v<∞. The constant C

does not otherwise depend on T or V ♭ or x.

(2) Suppose m♭ = n (with v0 not necessarily Archimedean). Then

C =
∏
v<∞
v ̸=v0

cv (20.4.6)

for some constants cv ∈ Q>0, all but finitely many of which are 1. For any given v < ∞
with v ̸= v0, the constant cv may depend on the local Hermitian lattice Lv and the quadratic

extension Fv/F
+
v , but otherwise does not depend on T or V or x or v0 or F/F+.

If Lv is self-dual, then cv = 1.

(3) Suppose m♭ = n− 1 (with v0 not necessarily Archimedean). Assume Kx,v0 ⊆ Gx(F+
v ) is the

unique maximal open compact subgroup. Then there are constants c′v ∈ Q>0 such that

C =
21−o(∆)hF

wFhF+ ·#(O×
F /(WO

×
F+))

∏
v<∞
v ̸=v0

c′v (20.4.7)

where o(∆) is the number of prime ideals of OF+ which ramify in OF , where hF (resp.

hF+) is the class number of F (resp. F+), where wF (resp. W ) is the number of (resp.

group of) roots of unity in F . All but finitely many c′v are equal to 1.

For each v < ∞ with v ̸= v0, the constant c′v may depend on the local Hermitian lattice

Lv, the quadratic extension Fv/F
+
v , and the local invariant ε(V ♭

v ) ∈ {±1}. The constant c′v
does not otherwise depend on T or V or V ♭or x or v0 or F/F+.

If Lv is self-dual, then c′v = 1 if Fv/F
+
v is unramified (resp. c′v = 2 if Fv/F

+
v is ramified).
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Proof. For the moment, we allow v0 Archimedean or not. The groupoid in the lemma statement

indeed has finite stabilizer groups, by discreteness of Gx(F
+). Take any factorizable open compact

subgroup Kx =
∏
vKx,v ⊆ Gx(A). Assume Kx,v = Gx,v(F

+
v ) for every Archimedean v, and assume

Kx,v = Kx,v0 is the open compact subgroup fixed in the lemma statement when v = v0. For each

v, define x♭v = [x♭1,v, . . . , x
♭
m♭,v

] ∈ V m♭

v to be the tuple satisfying x · a−1
v = [0, . . . , 0, x♭1,v, . . . , x

♭
m♭,v

]

(so T ♭v = (x♭v, x
♭
v)).

We have W̃ ∗
T ♭
v ,v

(a♭v, s0)
◦
n = 1 for all Archimedean v ̸= v0 by positive definite-ness of T ♭v (Section

15.2). For all but finitely many v, the Hermitian matrix ta♭vT
♭
va

♭
v defines a self-dual OFv -lattice (first

check the case where the collection (av)v comes from a single element a ∈ GLm(F ); then recall that

W̃ ∗
T ♭
v ,v

(a♭v, s,Φφv)n does not depend on the choice of av or a♭v). For such non-Archimedean v ̸= v0,

we have W̃ ∗
T ♭
v ,v

(a♭v, s,Φφ♭
v
)n = W̃ ∗

T ♭
v ,v

(a♭v, s)
◦
n = 1 if Lv is self-dual (see (15.5.7), Remark 15.5.1, and

the invariance property in (15.3.4)). Hence W̃ ∗
T ♭
v ,v

(a♭v, s,Φφ♭
v
)n = 1 for all but finitely many v.

Choose Haar measures dgx,v on Gx(F
+
v ) for each v. Assume that voldgx,v(Kx,v) ∈ Q for all v,

that voldgx,v(Kx,v) = 1 for all but finitely many v, and that voldgx,v(Kx,v) = 1 if v = v0 or if v | ∞.

For v <∞ with v ̸= v0, we give G(F+
v ) the unique Haar measure dgv such that

W ∗
T ♭′
v ,v

(1, s♭0,Φφ♭
v
)n =

∫
Gxv (F

+
v )\G(F+

v )
φ♭v(g

−1
v x′v) dgv (20.4.8)

for any tuple x′v ∈ V m
v (temporary notation) with nonsingular Gram matrix T ♭′v := (x′v, x

′
v) (Lemma

20.2.1). The integral is taken with respect to the quotient measure induced by dgx,v. This measure

dgv on G(F+
v ) may depend on n, m♭, the isomorphism class of Lv (as the normalization defining

W̃ ∗
T ♭,v

depended on Lv) as well as the local invariant ε(V ♭
v ) (Remark 20.2.2). The measure dgv

does not otherwise depend on T ♭v . Note voldgv(KL,v) ∈ Q>0 for any v < ∞ with v ̸= v0, since the

left-hand side of (20.4.8) lies in Q by Lemma 15.4.2. We have voldgv(KL,v) = 1 for all but finitely

many v (cf. the proof of Lemma 20.3.5; we have W ∗
T ♭
v ,v

(s♭0)
◦
n = 1 for all but finitely many v). We

equip G(Av0f ) with the product measure dg =
∏
v<∞
v ̸=v0

dgv.

Using the Haar measures specified above, we may unfold the groupoid cardinality as

deg

[
Gx(F

+)\
(
Gx(F

+
v0)/Kx,v0 ×Z(x

v0
f )

)]
(20.4.9)

= voldg(K
v0
L,f )

−1

∫
Gx(F+)\((

∏
v=v0
or v|∞

Gx(F
+
v ))×G(Av0

f ))
φv0f (g−1x) dg (20.4.10)

= vol(Gx(F
+)\Gx(A))voldg(Kv0

L,f )
−1

(∫
Gx(A

v0
f )\G(Av0

f )
φv0f (g−1x) dg

)
(20.4.11)

= vol(Gx(F
+)\Gx(A))voldg(Kv0

L,f )
−1
∏
v<∞
v ̸=v0

∫
Gx(F

+
v )\G(F+

v )
φ♭v(g

−1
v x♭va

♭
v) dgv (20.4.12)

= C
∏
v<∞
v ̸=v0

W̃ ∗
T ♭
v ,v

(a♭v, s
♭
0,Φφ♭

v
)n (20.4.13)
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with

C := vol(Gx(F
+)\Gx(A))

∏
v<∞
v ̸=v0

voldgv(KL,v)
−1. (20.4.14)

Note that the integrals are absolutely convergent, since the integrands are continuous and compactly

supported. This unfolding also shows that the groupoid in (20.4.4) has finitely many isomorphism

classes.

(1) Suppose v0 is Archimedean. Recall that the Tamagawa number of any nontrivial unitary

group is 2 [Ich04, Section 4]. After scaling one of the non-Archimedean local measures dgx,v

by an element of Q>0, we may assume
∏
v dgx,v is the Tamagawa measure on Gx(A). If

v | ∞, let dgv be the Haar measure on G(F+
v ) given by Lemma 20.2.1 (induced by dgx,v).

For v | ∞, the local invariant ε(V ♭
v ) is already determined by V and the requirement that

V ♭⊥
v is definite. Hence the measures dgv for v | ∞ do not depend on V ♭ (apply Remark

20.2.2).

By construction of the measures in Lemma 20.2.1 (via invariant differentials), we find

that
∏
v dgv equals the Tamagawa measure on G(A) up to scaling by a constant which may

depend on the lattices {Lv}v<∞ as well as n and m♭ (coming from our normalization of

local Whittaker functions W̃ ∗
T ♭,v

, Section 15.3). We conclude that the measure dg on G(Af )
may depend on V , n, m♭, F , and the lattices {Lv}v<∞, but it does not otherwise depend

on T or V ♭ or x.

(2) Suppose m♭ = n. Then Gx is the trivial group. Take voldgx,v(Kx,v) = 1 for all v. Consider

v < ∞ with v ̸= v0 and set cv = voldgv(KL,v)
−1. If Lv is self-dual, then cv = 1 by Lemma

20.3.5. In general, dgv may depend on Lv (but not on T or T ♭v).

(3) Suppose m♭ = n − 1. Then Gx is isomorphic to the norm-one torus inside ResF/F+ Gm.

Assume Kx,v ⊆ Gx(F
+
v ) is the unique maximal open compact subgroup for every v. Take

voldgx,v(Kx,v) = 1 for all v. Consider v < ∞ with v ̸= v0 and set c′v = voldgv(KL,v)
−1. If

Lv is self-dual, then c′v = 1 if Fv/F
+
v is unramified (resp. c′v = 2 if Fv/F

+
v is ramified) by

Lemma 20.3.5. In general, dgv may depend on Lv, m
♭ and the local invariant ε(V ♭

v ) (but

not on T or T ♭v).

We have

vol(Gx(F
+)\Gx(A)) = deg[Gx(F

+)\(Gx(A)/Kx)] =
deg(Gx(F

+)\Gx(A)/Kx)

wF

where deg[−] denotes groupoid cardinality and deg(−) denotes set cardinality. We have

deg(Gx(F
+)\Gx(A)/Kx) = 2u−thFh

−1
F+ , (20.4.15)

where t is the number of prime ideals of F+ which ramify in F , and where u ∈ Z is such that

H1(Gal(F/F+),O×
F )
∼= (Z/2Z)u [Ono85, (9)]. A group cohomology computation (omitted)

shows that 2−u = #(O×
F /(WO

×
F+))/2 (where # also means cardinality). □

21. Geometric Siegel–Weil

For our main results (arithmetic Siegel–Weil), we will need a special value formula for degrees

of 0-cycles in the generic fiber (Section 21.1). The result on complex volumes (Section 21.2) will
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not be needed, but may be of independent interest. Let F/Q be an imaginary quadratic field, with

accompanying notation as in Part 1. We also write hF (resp. wF ) for the class number (resp.

cardinality |O×
F |).

21.1. Degrees of 0-cycles. Let L be any non-degenerate Hermitian OF -lattice of signature (n−
1, 1) (not assuming n is even). LetM→ SpecOF [1/dL] be the associated moduli stack (Sections

3.1 and 3.2). Recall that dL ∈ Z is a certain integer associated to L, with dL = 1 if L is self-dual

when 2 ∤ ∆. Let V := L⊗OF
F be the associated F/Q Hermitian space.

Consider an integer m with m = n or m = n − 1. Pick any embedding F → C, and set

MC :=M×SpecOF
SpecC, etc.. Given T ∈ Hermm(Q) with rankT = n− 1, recall that there is an

associated special cycle Z(T ) → M. The base change Z(T )C is smooth, proper, and quasi-finite

(and of dimension zero) over SpecC (Lemma 3.5.5, also Lemma 4.7.4).

For each place v of Q, select any av ∈ GLm(Fv) such that ta−1
v Ta−1

v = diag(0, T ♭v) for some

T ♭v ∈ Hermn−1(F
+
v ) with detT ♭v ̸= 0. Choose any a♭v ∈ GLn−1(Fv) associated to av via the Iwasawa

decomposition, as in (20.4.1) (if m = n− 1, we can just take a♭v = av).

For formation of local Whittaker functions, we use the standard additive character ψ : Q\A→ C×

with ψ∞(x) = e2πix. Suppose χ := F×\A×
F → C× is a character satisfying χ|A× = ηn, where η is

the quadratic character associated to F/Q. For each prime p, we let φ♭v = 111n−1
Lp
∈ S(V (Qp)

n−1)

where 111Lp is the characteristic function of the lattice Lp ⊆ V (Qp).

Proposition 21.1.1. Let C ∈ Q>0 be the volume constant from Lemma 20.4.1(3), for the Hermit-

ian space V and with v0 =∞ in the notation of loc. cit.. In the situation above, we have

degZ(T )C =
hF
wF

C · W̃ ∗
T ♭
∞,∞(a♭∞, 1/2)

◦
n

∏
p

W̃ ∗
T ♭
p ,p

(a♭p, 1/2,Φφ♭
v
)n. (21.1.1)

Proof. As in Section 20.1, we write ΩT (R) := {x ∈ (V ⊗Q R)
m : (x, x) = T} for Q-algebras R.

Here degZ(T )C denotes the (stacky) degree of Z(T )C over SpecC, as explained at the end of

Appendix A.1.

Suppose there is no tuple x ∈ V m such that (x, x) = T . By the Hasse principle, we conclude

ΩT (Qv0) = ∅ for some place v0 of Q. Since rank(T ) < n, we must have v0 =∞ (i.e. for Fv <∞, any

non-degenerate Hermitian Fv vector space of rank n−1 embeds into any non-degenerate Hermitian

Fv vector space of rank n). We conclude that T ♭∞ (and ta♭∞T
♭
∞a

♭
∞) has signature (n − 1 − r, r)

for some r ≥ 2. The proposition holds in this case because W̃ ∗
T ♭
∞,∞(a♭∞, 1/2)

◦
n = 0 (by (15.2.6) or

(20.2.2)).

Suppose there exists x ∈ V m such that (x, x) = T . For such x, write x∞ ∈ V m
R and xf ∈

(V ⊗Q Af )m for the respective images. By complex uniformization of special cycles (Section 11.5),

we have

degZ(T )C =
hF
wF
· degD(x∞) · deg

[
U(V )(Q)\

∐
x∈Vm

(x,x)=T

D(xf )

]
. (21.1.2)

Here degD(x∞) is the degree of the Archimedean local special cycle D(x∞) ⊆ D (Section 8.2) for

any x ∈ V m with (x, x) = T . We know D(x∞) is a single point if T is positive semidefinite, and
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empty otherwise. Hence degD(x∞) = W̃ ∗
T ♭
∞,∞(a♭∞, 1/2)

◦
n (by (15.2.6), the right-hand side is 1 if

T ♭∞ is positive definite and 0 otherwise).

We then use Lemma 20.4.1 to evaluate the groupoid cardinality in (21.1.2). □

Remark 21.1.2. Suppose 2 ∤ ∆ and that L is self-dual (for the trace pairing, as is our running

convention). We then have C = 2hF /wF in Proposition 21.1.1. Take any a ∈ GLm(F ) such that
ta−1Ta−1 = diag(0, T ♭) where T ♭ ∈ Hermn−1(Q) with detT ♭ ̸= 0. For each place v of Q, let

av := a ∈ GLm(Fv). Set a
♭ = (a♭v)v ∈ GLm(AF ) (running over places v of Q) in the notation above.

The proposition then states

degZ(T )C = 2
h2F
w2
F

· Ẽ∗
T ♭(a

♭, 1/2)◦n. (21.1.3)

Remark 21.1.3. As observed by Li and Zhang [LZ22a, Remark 4.6.2], Proposition 21.1.1 may

be proved using Rapoport–Zink non-Archimedean uniformization in essentially the same way. In-

deed, the horizontal local special cycle Z(T )H → SpecOF [1/dL] is proper, quasi-finite, and flat

(Lemma 4.7.4), so we may calculate its degree in the fiber over any geometric point of SpecOF [1/dL].
Fix a geometric point in characteristic p > 0. Assume p ̸= 2 if 2 is nonsplit in OF , assume Lp is

self-dual, and assume either p ∤ ∆ or that L is self-dual and 2 ∤ ∆. Consider the n-dimensional

positive definite non-degenerate Hermitian space V with ε(Vp) = −1 and ε(Vℓ) = ε(Vℓ) for any

ℓ ̸= p.

Using non-Archimedean uniformization, we may then argue as in the proof of Proposition 21.1.1

(see (11.9.6)), using the special value formula for degrees of local special cycles (Lemma 18.1.3),

and the formula for uniformization degrees (Lemma 20.4.1) for V and v0 = p.

21.2. Complex volumes. Assume 2 is unramified in OF . For even integers n ∈ Z>0, we show

that the global normalizing factors Λn(s)
◦
n (Section 17.1) encode complex volumes of certain unitary

Shimura varieties (Propositions 21.2.1 and 21.2.3).

First consider n ≡ 0 (mod 4). Let V be the unique F/Q Hermitian space of signature (n, 0)

which satisfies ε(Vp) = 1 for all primes p (with ε as in Section 2.2). Set G := U(V ), let L ⊆ V be

a full-rank self-dual lattice, and write KL,f ⊆ G(Af ) for the adèlic stabilizer of L. The following

proposition should be a special case of a unitary analogue of the classical Siegel mass formula. It

is included for comparison with the analogous volume identity for a signature (n − 1, 1) unitary

complex Shimura variety. The left-hand side counts self-dual positive definite OF -lattices of rank

n, weighted by the inverses of the sizes of their automorphism groups.

Proposition 21.2.1. We have

#[G(Q)\(G(Af )/KL,f )] = 2Λn(0)
◦
n (21.2.1)

where the left-hand side denotes groupoid cardinality.

Proof. Let ψ : Q\A→ C× be the standard additive character with ψ∞(s) = e2πix. Let χ : A×
F → C×

be the trivial character.

For v = ∞, let φv(x) = e2πitr(x,x) ∈ S(V (R)n) and let T ∈ Hermn(R) be an arbitrary positive

definite matrix. For v < ∞ corresponding to a prime p, let φv = 111nLv
∈ S(V (Qp)

n) and let T
197



be the Gram matrix for any basis of Lv. For such T , we have W ∗
T,v(s0)

◦
n = 1 for all v (Sections

15.2 and 15.5.7). Recall W ∗
T,v(s)

◦
n = ΛT,v(s)

◦
nWT,v(s,Φφv) if v < ∞ (resp. W ∗

T,v(s)
◦
ne

−2πtr(T ) =

ΛT,v(s)
◦
nWT,v(s,Φφv) if v =∞); see Section 14.2.

Using these data, the local Siegel–Weil formula (Lemma 20.2.1) for each place v of Q shows that

vol(G(R)×KL,f )
−1 = Λn(0)

◦
n for the Tamagawa measure on G(A). Since G has Tamagawa number

2 [Ich04, §4], the proposition follows. □

Next, consider n ≡ 2 (mod 4). Let V be the unique n-dimensional F/Q Hermitian space of

signature (n− 1, 1) which satisfies ε(Vp) = 1 for all primes p. Again, set G := U(V ), let L ⊆ V be

a full-rank self-dual lattice, and write KL,f ⊆ G(Af ) for the adèlic stabilizer of L. For sufficiently

small open compact Kf ⊆ G(Af ), there is a complex (analytic) Shimura variety

ShKf ,C = G(A)\(D ×G(Af )/Kf ) (21.2.2)

of dimension n − 1, where D is the Hermitian symmetric domain from Section 8.1 (the V of loc.

cit. is our VR, with C = F ⊗QR-action). The metrized tautological bundle Ê∨ of loc. cit. descends

to ShKf ,C. For any open compact K ′
f ⊆ G(Af ) and any sufficiently small Kf ⊆ K ′

f , we set

vol(ShKf ,C) :=

∫
ShKf ,C

c1(Ê)n−1 vol(ShK′
f ,C)

:=
1

[K ′
f : Kf ]

vol(ShKf ,C). (21.2.3)

If KL′,f ⊆ G(Af ) is the adèlic stabilizer of a full-rank lattice L′ ⊆ V which is self-dual for the

Hermitian pairing, the quantity vol(ShK′
L,f ,C) was computed explicitly in [BH21, Theorem A]. We

show that the level KL,f (self-dual for the trace pairing) removes the additional factors at ramified

primes in loc. cit., and that the resulting complex volume agrees with 2Λn(0)
◦
n exactly.

The volume identity should also follow from [LL21, Footnote 11] (or possibly other geometric

Siegel–Weil results). We instead compute vol(ShKL,f ,C) using [BH21, Theorem A] by calculating

the “change of level” via the following lemma.

Lemma 21.2.2. Let E+
v be a non-Archimedean local field of odd residue cardinality qv, and let

Ev/E
+
v be a ramified quadratic extension with involution a 7→ aσ.

Let W be a rank 2d non-degenerate Ev/E
+
v Hermitian space, and assume W contains a full-rank

lattice M ⊆W which is self-dual (for the trace pairing). Let M ′ ⊆W be any full-rank lattice which

is self-dual for the Hermitian pairing.

If K,K ′ ⊆ U(W ) are the stabilizers of M and M ′ respectively, we have

vol(K)

vol(K ′)
= 2−1(1 + qdv) (21.2.4)

for any Haar measure on U(W ).

Proof. We know that any two full-rank lattices in W which are self-dual (resp. self-dual for the

Hermitian form) are isomorphic [Jac62, Proposition 8.1] (false if E+
v is allowed to have residue

characteristic 2). Hence vol(K)/vol(K ′) does not depend on the choice of M and M ′ (nor the

choice of Haar measure).
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Let ϖ be a uniformizer of Ev, and assume ϖσ = −ϖ. The lattices M and M ′ admit bases with

Gram matrices (
0 ϖ−1

−ϖ−1 0

) (
0 1

1 0

)
(21.2.5)

respectively. Choose a basis e1, . . . , e2d for M with Gram matrix as above. We may assume that

M ′ is the lattice with basis e1, . . . , ed, ϖed+1, . . . , ϖe2d. Let W (resp. W
′
) be the 2d-dimensional

vector space over Fqv with symplectic pairing (resp. bilinear pairing) given by the block matrices(
0 1

−1 0

)
resp.

(
0 1

1 0

)
. (21.2.6)

If PW ⊆ Sp(W ) and P
W

′ ⊆ O(W ) are the subgroups upper triangular matrices (in d × d blocks),

we have

#(K/(K ∩K ′)) = #(Sp(W )(Fqv)/PW (Fqv)) (21.2.7)

#(K ′/(K ∩K ′)) = #(O(W
′
)(Fqv)/PW ′(Fqv)). (21.2.8)

The lemma now follows from the formulas

#Sp(W )(Fqv) = qd
2

v

d∏
i=1

(q2iv − 1) #O(W
′
)(Fqv) = 2qd(d−1)

v (qdv + 1)−1
d∏
i=1

(q2iv − 1)

#PW (Fqv) = qd(d+1)/2
v

d∏
i=1

(qdv − qi−1
v ) #P

W
′(Fqv) = qd(d−1)/2

v

d∏
i=1

(qdv − qi−1
v ). □

We return to the global situation with F/Q as above and L ⊆ V a self-dual lattice.

Proposition 21.2.3. We have

vol(ShKL,f ,C) = 2Λn(0)
◦
n. (21.2.9)

Proof. If KL′,f ⊆ G(Af ) is the adèlic stabilizer of a full-rank lattice L′ ⊆ V which is self-dual for

the Hermitian pairing, the result [BH21, Theorem A] (see also [BH21, Theorem 5.5.1] to compare

c1(Ê) with the Chern form of the metrized Hodge bundle; note our Ê is L̂ in loc. cit. (up to

restricting)) gives

vol(ShKL′,f ,C) =

[
21−o(∆)

∏
ℓ|∆

(1 + ε(Vℓ)ℓ
−n/2)

n∏
j=1

∆j/2Γ(s+ j)L(2s+ j, ηj)

2jπs+j

]
s=0

(21.2.10)

where o(∆) is the number primes dividing ∆. We assumed ε(Vℓ) = 1 for all ℓ, and a direct

computation shows

Λn(s)
◦
n = ∆n/2(s−1)

n∏
j=1

∆j/2Γ(s+ j)L(2s+ j, ηj)

2jπs+j
(21.2.11)

(using even-ness of n). The claim now follows from the computation of vol(KL,f )/vol(KL′,f ) (for any

Haar measure on G(Af )) from Lemma 21.2.2. Note that the only discrepancy between vol(KL,f )

and vol(KL′,f ) is at ramified primes, since self-dual lattices for the Hermitian pairing are the same

as self-dual lattices at unramified primes. □
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22. Arithmetic Siegel–Weil

As above, we write F/Q for an imaginary quadratic field with discriminant ∆, nontrivial involu-

tion a 7→ aσ, associated quadratic character η : Q×\A× → C×, class number hF , and wF := |O×
F |.

We fix the standard nontrivial additive character ψ : Q\A → C× with ψ∞(x) = e2πix for the

Archimedean place ∞. We allow 2 | ∆ unless otherwise specified.

22.1. Main theorems. This section contains the statements and proofs of our main global results

(Theorem 22.1.1 and the secondary Theorem 22.1.6). Theorem 22.1.1 relies on essentially all preced-

ing results in this work (except for the computations in Section 19.2 and Section 21.2). In the proof,

we explain how to combine our local main results (proved in Part 6) and a (new) diagonalization

argument to deal with singular T (including those which are not-necessarily GLn(OF )-conjugate
to a block diagonal matrix with nonsingular diagonal blocks).

Assume 2 ∤ ∆, and let L be any non-degenerate self-dual Hermitian OF -lattice of signature

(n − 1, 1). Set n := rankL, and note n ≡ 2 (mod 4) (by the global product formula for local

invariants of Hermitian spaces; note ε(Lp) = 1 for all primes p).

Form the associated (smooth) moduli stackM→ SpecOF (Section 3.2). We are imposing “no

level structure” onM (i.e. K0,f ×Kf = KL0,f ×KL,f in the notation of Section 3.4).

For any m, given T ∈ Hermm(Q) (with F -coefficients), and given y ∈ Hermm(R)>0 (with C-
coefficients), recall that there is a arithmetic special cycle class [Ẑ(T )] ∈ Ĉhm(M)Q (Section 4.4)

and a normalized T -th Fourier coefficient E∗
T (y, s)

◦
n (Section 17.1) of a U(m,m) Eisenstein series.

If rank(T ) ≥ n − 1 or if T is nonsingular and not positive definite, we are using the current gT,y

from Section 12.4. The class [Ẑ(T )] thus implicitly depends on y.

For special cycles Z(T ) which are proper over SpecOF , recall that we have defined certain arith-

metic degrees without boundary contributions (4.7.1). These are the arithmetic degrees appearing

in our main theorem below.

For use below, we record the expression

Λn(s)
◦
n

Λn−1(s+ 1/2)◦n
= −1

2
L(2s+ 1, η)Γ(s+ 1)|∆|s+1/2π−s−1 (22.1.1)

which follows from our formula for the normalizing factor Λm(s)
◦
n (17.1.2). We thus have

Λn(0)
◦
n

Λn−1(1/2)◦n
= − hF

wF

d

ds

∣∣∣∣
s=0

(
Λn(s)

◦
n

Λn−1(s+ 1/2)◦n

)
= 2

hF
wF

hCM
Ê∨ (22.1.2)

where the left expression follows from the analytic class number formula, and hCM
Ê∨ is the height

constant from (4.3.6).

Theorem 22.1.1 (Corank 1 arithmetic Siegel–Weil). Assume the prime 2 splits in OF .
(1) For any T ∈ Hermn(Q) with rank(T ) = n− 1 and any y ∈ Hermn(R)>0, we have

d̂eg([Ẑ(T )]) = hF
wF

d

ds

∣∣∣∣
s=0

E∗
T (y, s)

◦
n. (22.1.3)

(2) For any T ♭ ∈ Hermn−1(Q) with detT ♭ ̸= 0 and any y♭ ∈ Hermn−1(R)>0, we have

d̂eg([Ẑ(T ♭) · ĉ1(Ê∨)) = 2
hF
wF

d

ds

∣∣∣∣
s=0

(
Λn(s)

◦
n

Λn−1(s+ 1/2)◦n
E∗
T ♭(y

♭, s+ 1/2)◦n

)
. (22.1.4)
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Proof. In the theorem statement, [Ẑ(T )] and [Ẑ(T ♭)] are implicitly formed with respect to y and y♭,

respectively. Note that E∗
T (y, s)

◦
n is a normalized Fourier coefficient for a U(n, n) Eisenstein series,

while E∗
T ♭(y

♭, s)◦n is a normalized Fourier coefficient for a U(n − 1, n − 1) Eisenstein series. In the

theorem statement, note that Z(T ) → SpecOF and Z(T ♭) → SpecOF are both proper (Lemma

4.7.5), so we may use (4.7.1) to define arithmetic degrees without boundary contributions.

Note that part (2) is the special case of part (1) when T = diag(0, T ♭) and y = diag(1, y♭). This

follows from the unfolding of Fourier coefficients in Corollary 17.2.2 (also the functional equation

in Lemma 17.1.1) and from the definition of arithmetic degrees in (4.7.1).

Fix T and y as in the statement of part (1) (not necessarily block diagonal). Fix any prime p.

It is enough to show that (22.1.3) holds modulo
∑

ℓ ̸=pQ · log ℓ (i.e. as elements of the additive

quotient R/(
∑

ℓ ̸=pQ · log ℓ)), where the sum runs over primes ℓ ̸= p. Varying the prime p removes

this discrepancy (giving an equality as elements of R) because the real numbers log ℓ (ranging over

all primes ℓ in Z) form a Q-linearly independent set.

(Step 1: Diagonalize) For convenience, we fix an embedding F → C. Pick any b ∈ GLm(F ) such

that tb
−1
Tb−1 = diag(0, T ♭) for some T ♭ ∈ Hermn−1(Q) with detT ♭ ̸= 0. We may (and do) assume

b ∈ GLn(OF ⊗Z Z(p)) as well. The proof below will show that the theorem holds modulo Q · log ℓ
for primes ℓ such that b ̸∈ GLn(OF ⊗Z Z(ℓ)).

For each place v of Q, select any b#v ∈ GL1(Fv) and b♭v ∈ GLn−1(Fv) associated to an Iwasawa

decomposition of bv ∈ GLn(Fv), as in (20.4.1) (where bv denotes the image of image of b). Also

consider the (unique) decomposition

bytb =

(
1 c

0 1

)(
y# 0

0 y♭

)(
1 0
tc 1

)
(22.1.5)

as in (12.4.4), where c ∈ M1,n−1(C), y# ∈ R>0, and y
♭ ∈ Hermn−1(R)>0. Pick any a#∞ ∈ GL1(C)

and a♭∞ ∈ GLn−1(C) such that a#∞ta#∞ = y# and a♭∞
ta♭∞ = y♭.

Let a# ∈ GL1(AF ) be the element with component a#v := b#v for places v <∞ and a#v := a#∞ for

the place v =∞. Similarly define a♭ ∈ GLn−1(AF ), and set a := diag(a#, a♭) ∈ GLn(AF ).
By unfolding for corank 1 Fourier coefficients (Corollary 17.2.2) and Fourier coefficient invari-

ance properties (see (13.3.3), (13.3.4), (15.2.4), and (15.3.4) for U(m) invariance when v | ∞ and

GLm(OF+
v
) invariance when v <∞), we find

E∗
T (y, s)

◦
n = χ∞(d)−1 det(y)−n/2E∗

T ′(m(a), s)◦n = Ẽ∗
T ′(a, s)◦n

= |a#|sF
Λn(s)

◦
n

Λn−1(s+ 1/2)◦n
Ẽ∗
T ♭(a

♭, s+ 1/2)◦n

−|a#|−sF
Λn(−s)◦n

Λn−1(−s+ 1/2)◦n
Ẽ∗
T ♭(a

♭, s− 1/2)◦n

where T ′ := diag(0, T ♭). We remind the reader that the notation E∗
T (−, s)◦n is overloaded (Section

17.1, also end of Section 13.2) and has slightly different meaning when “−” is y ∈ Hermm(R)>0

versus h ∈ U(m,m)(A) (e.g. h = m(a)).
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(Step 2: Leibniz rule) Since n ≡ 2 (mod 4), the functional equation for Ẽ∗
T ♭(a

♭, s)◦n (Lemma

17.1.1) implies

d

ds

∣∣∣∣
s=0

E∗
T (y, s)

◦
n (22.1.6)

= 2
d

ds

∣∣∣∣
s=0

(
|a#|sF

Λn(s)
◦
n

Λn−1(s+ 1/2)◦n
Ẽ∗
T ♭(a

♭, s+ 1/2)◦n

)
.

Since detT ♭ ̸= 0, we may factorize Ẽ∗
T ♭(a

♭, s+1/2)◦n into a product of (variants of) normalized local

Whittaker functions (17.1.8). Also recall the formulas in (22.1.2). We have |a#ℓ |ℓ = 1 (ℓ-adic norm

of a#ℓ ) for any prime ℓ such that b ∈ GLn(OF ⊗Z Z(ℓ)) (by construction, this includes ℓ = p). By

the Leibniz rule, we thus find(
2hF
wF

)−1 d

ds

∣∣∣∣
s=0

E∗
T (y, s)

◦
n (22.1.7)

= 2hCM
Ê∨ Ẽ

∗
T ♭(a

♭, 1/2)◦n (22.1.8)

−

(
d

ds

∣∣∣∣
s=1/2

(
|a#∞|s∞W̃ ∗

T ♭,∞(a♭∞, s)
◦
n

))∏
ℓ

W̃ ∗
T ♭,ℓ

(a♭ℓ, 1/2)
◦
n (22.1.9)

−

(
d

ds

∣∣∣∣
s=1/2

W̃ ∗
T ♭,p

(a♭p, s)
◦
n

)∏
v ̸=p

W̃ ∗
T ♭,v

(a♭v, 1/2)
◦
n (22.1.10)

−
∑
ℓ̸=p

(
d

ds

∣∣∣∣
s=1/2

|a#ℓ |
s
ℓW̃

∗
T ♭,ℓ

(a♭ℓ, s)
◦
n

)∏
v ̸=ℓ

W̃ ∗
T ♭,v

(a♭v, 1/2)
◦
n. (22.1.11)

The product in (22.1.9) runs over all primes ℓ (not including the Archimedean place ∞). The

products in (22.1.10) and (22.1.11) run over all places v of Q (with v ̸= p or v ̸= ℓ as indicated),

including v = ∞. The sum in (22.1.11) runs over all primes ℓ ̸= p. We remind the reader that

|a#∞|∞ = a#∞a
#
∞ ∈ R>0, by definition.

For all but finitely many primes ℓ, the Hermitian matrix ta♭ℓT
♭a♭ℓ ∈ Hermn−1(Qℓ) defines a (non-

degenerate) self-dual Hermitian OF⊗ZZℓ-lattice. For such ℓ, we have W̃ ∗
T ♭,ℓ

(a♭ℓ, s)
◦
n identically equal

to 1 (as a function in the s-variable). This follows from (15.5.7) and an invariance property for local

Whittaker functions (15.3.4). In particular, the sums and products are finite in the right-hand side

of (22.1.7).

For every prime ℓ, we have W̃ ∗
T ♭,ℓ

(a♭ℓ, s + 1/2)◦n ∈ Z[ℓ−1, ℓ−s, ℓs] (see (15.5.6), and again the

invariance property in (15.3.4)). We also have W̃ ∗
T ♭,v

(a♭v, 1/2)
◦
n ∈ Q for all place v of Q (if v | ∞,

this quantity is 1 if T ♭ is positive definite and 0 otherwise by (15.2.6)). The quantity in (22.1.10)

thus lies in Q · log p, and the quantity in (22.1.11) thus lies in
∑

ℓ̸=pQ · log ℓ.
As we explain below, every quantity on the right-hand side of (22.1.7) has geometric meaning

via our main local results, at least modulo Q · log ℓ for primes ℓ such that b ̸∈ GLn(OF ⊗Z Z(ℓ)).

(Step 3a: Local geometric interpretation: complex degree) Set Z(T )C = (Z(T ) ×SpecOF
SpecC)

for the embedding F → C fixed above. We have degZ(T )C = (degF Z(T ) ×SpecOF
SpecF ) =

2 degQ(Z(T ) ×SpecZ SpecQ) =: degZZ(T )H . Here degF and degQ denote stacky degrees over

SpecF and SpecQ, respectively, as defined at the end of Section A.1.
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By the geometric Siegel–Weil formula for Kudla–Rapoport 0-cycles over C (Proposition 21.1.1,

also Remark 21.1.2), we conclude

degZZ(T )H = 2degZ(T )C =
4h2F
w2
F

Ẽ∗
T ♭(a

♭, 1/2)◦n. (22.1.12)

This gives a geometric interpretation of (22.1.8).

(Step 3b: Local geometric interpretation: at ∞) We claim that

Int∞(T, y) = − d

ds

∣∣∣∣
s=1/2

(
|a#∞|s∞W̃ ∗

T ♭,∞(a♭∞, s)
◦
n

)
mod

∑
ℓ such that

b̸∈GLn(OF⊗ZZ(ℓ))

Q · log ℓ (22.1.13)

where Int∞(T, y) is the geometric quantity defined in (12.4.15).

Indeed, (12.4.8) implies

Int∞(T, y) = (22.1.14)
Int∞(T ♭, a♭∞

ta♭∞)− log(|a#∞|∞) mod
∑

ℓ such that
b ̸∈GLn(OF⊗ZZ(ℓ))

Q · log ℓ if T ♭ > 0

Int∞(T ♭, a♭∞
ta♭∞) mod

∑
ℓ such that

b ̸∈GLn(OF⊗ZZ(ℓ))
Q · log ℓ if T ♭ ̸> 0.

(22.1.15)

The notation T ♭ > 0 (resp. T ♭ ̸> 0) means that T ♭ is positive definite (resp. not positive definite).

We have Int∞(T ♭, a♭∞
ta♭∞) = Int∞(ta♭∞T

♭a♭∞, 1) (12.4.3). By our main Archimedean local identity

(Theorem 19.1.1), we have Int∞(ta♭∞T
♭a♭∞, 1) =

d
ds

∣∣
s=−1/2

W ∗
ta♭∞Ta♭∞,∞(s)◦n.

The Whittaker function invariance property (15.2.4) implies W ∗
ta♭∞T ♭a♭∞

(s)◦n = W̃ ∗
T ♭(a

♭
∞, s)

◦
n. By

the Archimedean local functional equation (16.2.1) we have d
ds

∣∣
s=−1/2

W̃ ∗
T ♭,∞(a♭∞, s)

◦
n = − d

ds

∣∣
s=1/2

W̃ ∗
T ♭,∞(a♭∞, s)

◦
n.

This is still true when T ♭ has signature (n− 1− r, r) for r ≥ 2, as both sides are zero in this case

(by definition for the geometric side, and by (19.1.5) for the local Whittaker function). As already

mentioned, recall that W̃ ∗
T ♭(a

♭, 1/2)◦n is 1 if T ♭ is positive definite, and is 0 is T ♭ is not positive

definite (15.2.6). Now (22.1.13) follows from what we have just discussed.

Next, recall the global Archimedean intersection number Int∞,global(T, y) =
∫
MC

gT,y (where gT,y

is a current associated with T and y) as in (12.4.13). Recall the relation (12.4.14)

Int∞,global(T, y) =
hF
wF

Int∞(T, y) · deg

[
U(V )(Q)\

∐
x∈V n

(x,x)=T

D(xf )

]
(22.1.16)

where V := L⊗OF
F and D(xf ) is a certain “away-from-∞” local special cycle (it is a discrete set),

defined in Section 12.1. The displayed groupoid cardinality deg[· · · ] describes certain “complex

uniformization degrees” (Section 12.4.13). If there exists x ∈ V n with (x, x) = T , the groupoid

cardinality is

deg

[
U(V )(Q)\

∐
x∈V n

(x,x)=T

D(xf )

]
=

2hF
wF

∏
ℓ

W̃ ∗
T ♭,ℓ

(a♭ℓ, 1/2)
◦
n (22.1.17)

by local Siegel–Weil as in Lemma 20.4.1 (with v0 = ∞ in the notation of loc. cit.). If there does

not exist such x, then the Hasse principle implies that T ♭ has signature (n − 1 − r, r) for some
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r ≥ 2 (compare the proof of Proposition 21.1.1). In this case, we have d
ds

∣∣
s=1/2

W̃ ∗
T ♭,∞(a♭∞, s)

◦
n = 0

(19.1.5). In all cases, we thus have

Int∞,global(T, y) = −
2h2F
w2
F

(
d

ds

∣∣∣∣
s=1/2

(
|a#∞|s∞W̃ ∗

T ♭,∞(a♭∞, s)
◦
n

))∏
ℓ

W̃ ∗
T ♭,ℓ

(a♭ℓ, 1/2)
◦
n. (22.1.18)

modulo
∑

ℓQ·log ℓ for primes ℓ such that b ̸∈ GLn(OF⊗ZZ(ℓ)). This give a geometric interpretation

of (22.1.9).

(Step 3c: Local geometric interpretation: at p) Recall Intp(T ) := IntH ,p(T ) + IntV ,p(T ) (11.9.9),

where IntH ,p(T ) is a “horizontal local intersection number” (11.9.1) and IntV ,p(T ) is a “vertical local

intersection number” (11.8.1) associated with T . The former describes “local change of tautological

(or Faltings) height” and the latter describes degrees for “components in positive characteristic” in

terms of local special cycles on Rapoport–Zink spaces.

We claim that

Intp(T ) = −ep
d

ds

∣∣∣∣
s=1/2

W̃ ∗
T ♭,p

(a♭p, s)
◦
n (22.1.19)

where ep = 1 if p is unramified (resp. ep = 2 if p is ramified).

First note that the functional equation (16.1.4) implies− d
ds

∣∣
s=1/2

W̃ ∗
T ♭,p

(a♭p, s)
◦
n = d

ds

∣∣
s=−1/2

W̃ ∗
T ♭,p

(a♭p, s)
◦
n.

The invariance property for Whittaker functions (15.3.4) implies W̃ ∗
T ♭,p

(a♭p, s)
◦
n = W̃ ∗

ta♭pT
♭a♭p,p

(s)◦n.

Form the positive definite F/Q Hermitian spaces W ⊆ V as in Section 11 (recall ε(Vp) = −1 and

ε(Vℓ) = ε(Vℓ) for all ℓ ̸= p). Set OF,p := OF ⊗ZZp. For any xp ∈Wn
p with Gram matrix T (such xp

exists because rank(T ) ≤ n−1; recall W has rank n if p is nonsplit and rank n−1 if p is split), there

exists a basis of L♭p := spanOF,p
(xp) with Gram matrix ta♭pT

♭a♭p. Indeed, we have ap ∈ GLn(OFp)

and a♭p ∈ GLn−1(OFp) by construction (and recall ta−1
p Ta−1

p = diag(0, T ♭) by definition). We

remind the reader that (15.5.6) may be used to pass between (normalized) local densities and local

Whittaker functions. We also pass between the notation Den∗(X,L♭p)n = Den∗(X, ta♭pT
♭a♭p)n as

explained in Section 15.5. Now (22.1.19) follows from our main non-Archimedean local identity

(Theorem 18.1.2).

Next, recall the horizontal and vertical global intersection numbers IntH ,p,global(T ) and IntV ,p,global(T )

at p, associated with T (see (11.9.7) and (11.8.3)). These are elements of Q · log p. Recall the F/Q
Hermitian space W⊥ defined in Section 11.3, which satisfies V = W ⊕W⊥ (orthogonal direct

sum). In particular, W⊥ = 0 if p is nonsplit and dimF W⊥ = 1 if p is split.

By (11.9.7) and (11.8.3) (and in the notation of loc. cit.), we have

Intp,global(T ) =
hF
wF

Intp(T ) · deg

[
I1(Q)\

( ∐
x∈Wn

(x,x)=T

U(W⊥
p )/K1,L⊥

p
×Z(xp)

)]
. (22.1.20)

The notation Z(xp) means a certain “away-from-p” local special cycle (a discrete set), defined

in Section 11.2. Recall that K1,L⊥
p
⊆ U(W⊥

p ) is the unique maximal open compact subgroup and

I1 = U(W)×U(W⊥) as algebraic groups over Q (Section 11.5). The displayed groupoid cardinality

deg[· · · ] encodes certain “Rapoport–Zink non-Archimedean uniformization degrees”.
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If there exists x ∈Wn with Gram matrix T , then local Siegel–Weil (Lemma 20.4.1) implies

deg

[
I1(Q)\

( ∐
x∈Wn

(x,x)=T

U(W⊥
p )/K1,L⊥

p
×Z(xp)

)]
=

2hF
epwF

∏
v ̸=p

W̃ ∗
T ♭,v

(a♭v, 1/2)
◦
n. (22.1.21)

(in the notation of Lemma 20.4.1, take v0 = p and use the hermitian space V for the V in loc. cit.).

Set ΩT (R) := {x ∈ (W ⊗Q R)
n : (x,x) = T} for Q-algebras R. If ΩT (Q) = ∅, then the Hasse

principle implies ΩT (Qv) = ∅ for some place v of Q. We have ΩT (Qp) ̸= ∅ (either p is nonsplit and

W = V and the claim follows because rankT < rankW (compare the proof of Proposition 21.1.1),

or p is split and ΩT (Qp) ̸= ∅ automatically). For all places v, we have ΩT (Qv) = ∅ if and only if

Ωta♭vT
♭a♭v

(Qv) = ∅ (where Ωta♭vT
♭a♭v

is defined like ΩT but for (n − 1)-tuples); this follows from our

diagonalization of T (e.g. ta−1
v Ta−1

v = diag(0, T ♭) for all v <∞).

If ΩT (Qv) = ∅, we thus conclude W̃ ∗
T ♭,v

(a♭v, 1/2)
◦
n = W̃ ∗

ta♭vT
♭a♭v ,v

(1/2)◦n = 0 by the invariance

property for local Whittaker functions (see (15.2.4) and (15.3.4)) and by local Siegel–Weil (20.2.2).

Hence (22.1.21) holds even if there is no x ∈ Wn such that (x,x) = T (both sides are 0 in this

case).

We have shown

Intp,global(T ) = −
2h2F
w2
F

(
d

ds

∣∣∣∣
s=1/2

W̃ ∗
T ♭,p

(a♭p, s)
◦
n

)∏
v ̸=p

W̃ ∗
T ♭,v

(a♭v, 1/2)
◦
n. (22.1.22)

This gives a geometric interpretation for (22.1.10).

(Step 4: Finish) Recall the definition of arithmetic degree without boundary contributions

d̂eg([Ẑ(T )]) (4.7.1). In our current situation, this is

d̂eg([Ẑ(T )]) :=
(∫

MC

gT,y

)
+ d̂eg(Ê∨|Z(T )H ) +

∑
ℓ

degFℓ
(LZ(T )V ,ℓ) log ℓ.

where the sum runs over all primes ℓ. By definition, we have∫
MC

gT,y = Int∞,global(T, y) degFℓ
(LZ(T )V ,ℓ) log ℓ = IntV ,ℓ,global(T )

d̂eg(Ê∨|Z(T )H ) = (degZZ(T )H ) · hCM
Ê∨ +

∑
ℓ

IntH ,ℓ,global(T )
(22.1.23)

where hCM
Ê∨ is the height constant from (4.3.6). See (12.4.13) (Archimedean), (11.8.3) (vertical),

and (11.9.8) (horizontal). For all primes ℓ, we have IntV ,ℓ,global(T ) ∈ Q · log ℓ and IntH ,ℓ,global(T ) ∈
Q · log ℓ. These quantities are 0 for all but finitely many ℓ.

After multiplying both sides of (22.1.7) by 2(hF /wF )
2, we apply the results of Steps 3a, 3b, and

3c above (see (22.1.12), (22.1.18), and (22.1.22)) to find

hF
wF

d

ds

∣∣∣∣
s=0

E∗
T (y, s)

◦
n = d̂eg([Ẑ(T )]) (22.1.24)

as elements of R/(
∑

ℓ̸=pQ · log ℓ). As we already discussed, varying p shows that this identity holds

as an equality of real numbers. □
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Remark 22.1.2 (Nonsingular arithmetic Siegel–Weil). In the setup above (in particular, n ≡ 2

(mod 4)), consider any T ∈ Hermn(Q) with detT ̸= 0 and any y ∈ Hermn(R)>0. Assuming the

prime 2 is split in OF , we still have

d̂eg([Ẑ(T )]) = hF
wF

d

ds

∣∣∣∣
s=0

E∗
T (y, s)

◦
n. (22.1.25)

where the Green current for [Ẑ(T )] is formed with respect to y, and where d̂eg([Ẑ(T )]) again denotes

the arithmetic degree without boundary contributions as in (4.7.1). This should be compared with

our preceding main theorem for singular T of corank 1 (Theorem 22.1.1).

Using the local theorems of Liu, Li–Zhang, and Li–Liu (cited below), one can prove (22.1.25) by

a local decomposition as in the proof of Theorem 22.1.1 (no diagonalization procedure is necessary

here) using the volume constant calculated in Lemma 21.1.1. This is possibly considered known to

experts up to a volume constant by the cited local theorems. Nevertheless, the global statement is

not available in the literature, so we have stated it. A sketch is provided below.

Decomposing E∗
T (y, s)

◦
n into a product of local Whittaker functions (Section 17.1), we find

d

ds

∣∣∣∣
s=0

E∗
T (y, s)

◦
n =

(
d

ds

∣∣∣∣
s=0

W ∗
T,∞(y, s)◦n

)∏
ℓ

W ∗
T,ℓ(0)

◦
n (22.1.26)

+
∑
p

(
d

ds

∣∣∣∣
s=0

W ∗
T,p(s)

◦
n

)
W ∗
T,∞(y, 0)◦n

∏
ℓ ̸=p

W ∗
T,ℓ(0)

◦
n (22.1.27)

d̂eg([Ẑ(T )]) = Int∞,global(T, y) +
∑
p

Intp,global(T ). (22.1.28)

At most one of the summands is nonzero (see below), and all but finitely many W ∗
T,ℓ(s)

◦
n are

identically equal to 1 as functions of s. In contrast with our main theorem, these intersection

numbers Intp,global(T ) are “purely vertical”, without a mixed characteristic contribution.

In this setup, the local Archimedean theorem [Liu11, Theorem 4.1.7] (restated in our notation

in Theorem 19.1.1) and the local Kudla–Rapoport theorems [LZ22a, Theorem 1.2.1] (inert) and

[LL22, Theorem 2.7] (ramified, exotic smooth, even n) take the place of our main local identities

(which were for corank 1 singular T ). In combination with local Siegel–Weil with explicit constants

(Lemma 20.4.1(1)), the cited local theorems imply

Int∞,global(T, y) =

(
d

ds

∣∣∣∣
s=0

W ∗
T,∞(y, s)◦n

)∏
p

W ∗
T,p(s)

◦
n (22.1.29)

Intp,global(T ) =

(
d

ds

∣∣∣∣
s=0

W ∗
T,p(s)

◦
n

)
W ∗
T,∞(y, 0)◦n

∏
ℓ̸=p

W ∗
T,ℓ(0)

◦
n (22.1.30)

in our notation (end of Sections 12.4 and 11.8 respectively).

To apply local Siegel–Weil in the preceding discussion, we have in mind a (presumably routine)

Hasse principle argument (compare [KR14, §9]). We briefly sketch this argument in our setup. For

any prime p, set εp(T ) := ηp((−1)n(n−1)/2 detT ) (the usual local invariant from Section 2.2), where

ηp : Q×
p → {±1} is the local quadratic character associated to F/Q.

We have Int∞,global(T, y) = 0 unless T has signature (n − 1, 1) and εp(T ) = 1 for all p. For

such T , the special cycle Z(T ) is empty (but may have a nontrivial Green current). We have
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Intp,global(T ) = 0 unless T is positive definite, εp(T ) = −1, and εℓ(T ) = 1 for all primes ℓ ̸= p. For

such T , the special cycle Z(T ) is supported in characteristic p (or empty). For all other T , the special

cycle Z(T ) is empty with Green current 0. These claims follow from e.g. uniformization of special

cycles (e.g. Sections 12.4 (Archimedean) and 11.8 (non-Archimedean)) and the Hasse principle

(e.g. applied to V from loc. cit. in the non-Archimedean case). In particular, Intp,global(T ) = 0 if

p is split in OF , and Z(T ) is empty over any split p.

On the analytic side, we have W ∗
T,p(0)

◦
n = 0 if εp(T ) = −1 (by local Siegel–Weil (20.2.2), or the

functional equation (16.1.4)) and W ∗
T,∞(y, 0)◦n = 0 if T is not positive definite (local Siegel–Weil

again, or (15.2.6)). If T has signature (n− r, r) for r ≥ 2, we have d
ds

∣∣
s=0

W ∗
T,∞(y, s)◦n = 0 (19.1.5).

For the analogous global result (still detT ̸= 0 and T ∈ Hermn, central derivative) for an

unramified CM extension of number fields F/F+ where all 2-adic places are split (forcing F+ ̸= Q)

and a lattice L which is self-dual for the Hermitian pairing, see [LZ22a, Theorem 15.5.1] (at least

up to a volume constant). For the analogous global result (still detT ̸= 0 and T ∈ Hermn, central

derivative) for possibly ramified F/F+ where all 2-adic places are split, on Krämer integral models

(semistable reduction at ramified primes), and again L self-dual for the Hermitian pairing, see

[HLSY23, Theorem 10.1] (at least up to a volume constant). For the result on Krämer models, one

needs to correct the Eisenstein series derivative by special values of other Eisenstein series.

Remark 22.1.3. When n ≡ 0 (mod 4), there is no non-degenerate self-dual signature (n − 1, 1)

Hermitian OF -lattice. In this case, Theorem 22.1.1(1) still holds in the sense that d
ds

∣∣
s=0

E∗
T (y, s)

◦
n =

0 (by the functional equation, Lemma 17.1.1).

Remark 22.1.4. We explain how Theorem 22.1.1 may be reformulated in terms of Faltings heights.

Assume 2 is split in OF . Let ω̂ be the metrized Hodge bundle onM as defined in Section 4.3. Take

T ∈ Hermn(Q) with rank(T ) = n− 1. By (11.9.10), we have

d̂eg(ω̂|Z(T )H ) = (degZZ(T )H ) · n · hCM
Fal − 2

∑
p

IntH ,p,global(T ) (22.1.31)

where hCM
Fal is the Faltings height of any elliptic curve with CM by OF (as in (4.3.5)). By definition

of Faltings height, we have

d̂eg(ω̂|Z(T )H ) = 2
∑

α′∈Z(T )(C)

|Aut(α′)|−1hFal(A) (22.1.32)

where α′ = (A0, ι0, λ0, A, ι, λ) ∈ Z(T )(C) (choose F → C), and where hFal(A) is the Faltings height

of A (as in Section 9.1) after descent to any number field, with metric normalized as in (4.3.1).

Alternatively, we could consider morphisms SpecC → M over SpecZ, which would remove the

factor of 2 in the previous formula.

Our main theorem (Theorem 22.1.1) admits the equivalent formulation

Int∞,global(T, y)−
1

2
d̂eg(ω̂|Z(T )H ) + (degZZ(T )H ) · (hCM

Ê∨ +
n

2
· hCM

Fal ) +
∑
p

IntV ,p,global(T )

=
hF
wF

d

ds

∣∣∣∣
s=0

E∗
T (y, s)

◦
n (22.1.33)
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via the decomposition in (22.1.23). We remind the reader that degZZ(T )H is essentially a special

value of a U(n − 1, n − 1) Eisenstein series (22.1.12). For further discussion of the special case

n = 2, see Section 22.2.

In the rest of Section 22.1, we discuss some results which are applicable even if L is not self-dual.

Allow possibly 2 | ∆, and let L be any non-degenerate Hermitian OF -lattice of signature (n−1, 1)
(with n not necessarily even). Select any character χ : F×\A×

F → C× such that χ|A× = ηn,

where η is the quadratic character associated with F/Q. Set V = L ⊗OF
F , with associated local

Hermitian space Vv for each place v of Q. Suppose m♭ ≥ 0 is an integer. For each prime p, let

φ♭p = 111m
♭

Lp
∈ S(V m♭

p ), form the local Siegel–Weil standard section Φφ♭
v
∈ I(χv, s), and set

ΦL := Φ(n)
∞
⊗
p

Φφ♭
p
∈ I(χ, s) (22.1.34)

where the Archimedean component Φ
(n)
∞ is the standard (normalized) scalar weight section from

Section 13.2. Form the associated classical U(m♭,m♭) Eisenstein series E(z♭, s,ΦL)n for z♭ ∈ Hm♭ ,

and consider the normalized Eisenstein series Fourier coefficients

E∗
T ♭(y

♭, s,ΦL)n :=

(∏
p

γψp(Vp)
m♭

vol(Lp)
−m♭

)
Λm♭(s)◦nET ♭(y♭, s,ΦL)n (22.1.35)

for T ♭ ∈ Hermm♭(Q). We are not sure whether this is a “good” normalization if L is not self-dual,

so the preceding notation appears nowhere else in this work. As in Section 15.3, γψp(Vp) is a Weil

index and vol(Lp) is the volume of Lp with respect to a certain self-dual Haar measure on Vp (these

factors are 1 for all but finitely many p).

Form the moduli stack M → SpecOF [1/dL] associated with L as in Section 3.1 (also Section

3.2).

Remark 22.1.5. Since the proof of Theorem 22.1.1 is local in nature, it is possible to use our local

main theorems to prove variants for non self-dual L, up to discarding finitely many primes.

Set m♭ = n − 1. Consider T ♭ ∈ Hermn−1(Q) with detT ♭ ̸= 0. Let C ∈ Q>0 be the volume

constant from Lemma 20.4.1(3), for the Hermitian space V and with v0 = ∞ etc. in the notation

of loc. cit.. Consider y♭ ∈ Hermn−1(R)>0. Form [Ẑ(T ♭)] with Green current with respect to y♭.

Arguing as in the proof of our main theorem (Theorem 22.1.1) gives

d̂eg([Ẑ(T ♭)] · ĉ1(Ê∨)) = C · d
ds

∣∣∣∣
s=0

(
Λn(s)

◦
n

Λn−1(s+ 1/2)◦n
E∗
T ♭(y

♭, s+ 1/2,ΦL)n

)
mod

∑
p|2dL

Q · log p.

(22.1.36)

For proving (22.1.36), the diagonalization argument (Step 1) in the proof of Theorem 22.1.1 can

be skipped. If 2 is split in OF , the expression “2dL” in (22.1.36) may be replaced by “dL”.

In the case n = 1, recall thatM extends smoothly (and nontrivially) over all of SpecOF (Remark

3.1.4). In this case, we need not discard any primes in (22.1.36). As m♭ = 0, the normalized

U(m♭,m♭) Eisenstein series E∗ is the constant function 1 in this case.
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Recall that our main Archimedean local result was valid in arbitrary “codimension” for empty

local special cycles with possibly nontrivial Green current (“purely Archimedean intersection num-

ber”). This has the following global consequence.

Theorem 22.1.6. Let m♭ be any integer with 1 ≤ m♭ ≤ n. Consider T ♭ ∈ Hermm♭(Q) which is

nonsingular and not positive definite. Let C ∈ Q>0 be the volume constant from Lemma 20.4.1(1),

for the Hermitian space V , the lattice L, and v0 =∞ in the notation of loc. cit..

For any y♭ ∈ Hermm♭(R)>0, we have an equality of real numbers

d̂eg([Ẑ(T ♭)] · ĉ1(Ê∨)n−m
♭
) :=

∫
MC

gT ♭,y♭ ∧ c1(Ê
∨
C )

n−m♭
= (−1)n−m♭

C · hF
wF

d

ds

∣∣∣∣
s=s♭0

E∗
T ♭(y

♭, s,ΦL)n

(22.1.37)

where s♭0 := (n−m♭)/2.

Proof. In the theorem statement, we setMC :=M×SpecOF
SpecC for either choice of embedding

F → C. Recall that the special cycle Z(T ♭) is empty by the non-positive definite-ness (Section

3.3). The current gT ♭,y♭ associated with [Ẑ(T ♭)] is formed with respect to y♭, as usual.

Using our main Archimedean result (Theorem 19.1.1) and local Siegel–Weil (Lemma 20.4.1) for

uniformization degrees, the theorem follows as in the proof of Theorem 22.1.1, Step (3a). Since

detT ♭ ̸= 0, the proof is simpler here as the diagonalization argument of loc. cit. plays no role.

RecallW ∗
T ♭,∞(y♭, s♭0)

◦
n = 0 (15.2.6), so the derivatives of non-Archimedean Whittaker functions play

no role. If T ♭ has signature (m♭ − r, r) for r ≥ 2, then both sides of (22.1.37) are zero. The sign

(−1)n−m♭
comes from the Archimedean local functional equation (Lemma 16.2.1), since Theorem

19.1.1 was stated at s = −s♭0. □

When m♭ = n, the preceding result is due to Liu (see [Liu11, Theorem 4.17, Proof of Theorem

4.20] and also [LZ22a, Theorem 15.3.1]). We do not have a new proof of this case (we deduced our

local result for arbitrary m♭ from Liu’s result using our local limiting method).

22.2. Faltings heights of Hecke translates of CM elliptic curves. Using the Serre tensor

construction, we restate part of the simplest case (n = 2) of our main theorem (Theorem 22.1.1)

in more elementary terms, via Faltings heights of Hecke translates of CM elliptic curves (Corollary

22.2.2).

We assume 2 ∤ ∆, but allow 2 inert or split in OF for the moment. When n = 2 and L is a

self-dual Hermitian OF -lattice of signature (1, 1), recall

M = M0 ×SpecOF
M (1, 1)◦ (22.2.1)

in the notation of Section 3.2. Recall that M0 is the moduli stack parameterizing (A0, ι0, λ0)

where A0 is an elliptic curve with signature (1, 0) action ι0 by OF , and λ0 the unique principal

polarization. Recall that M (1, 1)◦ is the closure of the generic fiber in the moduli stack of signature

(1, 1) Hermitian abelian schemes (A, ι, λ) where |∆| · λ is a polarization with ker(|∆| · λ) = A[
√
∆].

For integers j > 0, we first recall how to relate the special cycles Z(j)→M to Hecke translates

of CM elliptic curves, as explained in [KR14, §14]. Our |∆| · λ is their λ.
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Write Mell for the moduli stack of elliptic curves base-changed to SpecOF . IfO∗
F := HomZ(OF ,Z),

we write λtr : OF → O∗
F for the σ-linear map corresponding to the symmetric Z-bilinear pairing

trF/Q(a
σb) on OF . As in [KR14, §14], there is a Serre tensor morphism

Mell M (1, 1)◦

E E ⊗Z OF

iSerre

(22.2.2)

where E ⊗Z OF is given the polarization |∆|−1(λE ⊗ λtr) : E ⊗Z OF → E∨ ⊗Z O∗
F . As we have

seen previously, E ⊗ZOF is (by definition) the functor given by (E ⊗ZOF )(S′) = E(S′)⊗ZOF for

schemes S′ (over the understood base for E).

For the rest of Section 22.2, we now assumeO×
F = {±1}. In this case, the Serre tensor morphism is

an open and closed immersion.47 Indeed, iSerre is proper (valuative criterion) and a monomorphism

of algebraic stacks, hence a closed immersion of algebraic stacks. Since the source and target are

Deligne–Mumford, smooth, finite type, and separated over SpecOF of the same relative dimension,

this implies that iSerre is also an open immersion.

The class group Cl(OF ) acts M (1, 1)◦ as follows. Given any fractional ideal a ⊆ F , set a∨ :=

HomOF
(a,OF ), and consider the σ-linear map λa : a

∼−→ a∨ given by the perfect positive-definite

Hermitian pairing a, b 7→ N(a)−1aσb on a. There is an induced automorphism of M (1, 1)◦ sending

(A, ι, λ)→ (A⊗OF
a, ι, λ⊗ λa). (22.2.3)

The action of Cl(OF ) on M (1, 1)◦ is simply transitive on the set of connected components (see

the proof of [KR14, Proposition 14.4]). There is a similar action of Cl(OF ) on M0 which sends

(A0, ι0, λ0) 7→ (A0⊗OF
a, ι0, λ0⊗λa). Given a fractional ideal a ⊆ F , we write fa :M→M for the

induced automorphism just described.

Given any integer j > 0, the action of Cl(OF ) preserves Z(j), in the sense that there is a

2-Cartesian diagram

Z(j) Z(j)

M M

f̃a

fa

(22.2.4)

for any fractional ideal a, where f̃a sends

(A0, ι0, λ0, A, ι, λ, x) 7→ (A0 ⊗OF
a, ι0, λ0 ⊗ λa, A⊗OF

a, ι, λ⊗ λa, x⊗ 1) (22.2.5)

for x ∈ HomOF
(A0, A) satisfying x

†x = j.

Consider the j-th Hecke correspondence Tj →M0 ×SpecOF
Mell, where Tj is the stack parame-

terizing tuples (E0, ι0, λ0, E, w) for (E0, ι0, λ0) ∈M0, for E ∈Mell, and w : E → E0 an isogeny of

degree j.

47The hypothesis O×
F = {±1} should be added in [KR14, Proposition 14.4], as otherwise Aut(E) ̸= Aut(E⊗ZOF )

(right-hand side means OF -linear automorphisms preserving the polarization) so iSerre : Mell → M (1, 1)◦ is not a

monomorphism and hence cannot be a closed immersion in the sense of [SProject, Section 04YK]. The remaining

arguments are the same at least if 2 ∤ ∆.
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Consider the map M0 ×Mell → M induced by iSerre (and the identity on M0). The Kudla–

Rapoport cycle Z(j) pulls back to the Hecke correspondence Tj , i.e. there is a 2-Cartesian diagram

Tj Z(j)

M0 ×SpecOF
Mell M

(22.2.6)

where Tj → Z(j) sends

(E0, ι0, λ0, E, w) 7→ (E0, ι0, λ0, E ⊗Z OF , ι, λE ⊗ λtr, xw) (22.2.7)

(with λE denoting the unique principal polarization of E) and where xw : E0 → E ⊗Z OF is the

OF -linear map such that
√
∆x†w ∈ HomOF

(E ⊗Z OF , E0) corresponds to w via the adjunction

HomOF
(E ⊗Z OF , E0) = Hom(E,E0). (22.2.8)

Here, we are implicitly claiming deg(w) = x†wxw. The fact that (22.2.6) is well-defined and 2-

Cartesian is proved in [KR14, Proposition 14.5].

We next discuss the Eisenstein series of Theorem 22.1.1(2) in more elementary terms when

n = 2. In this case, the U(1, 1) Eisenstein series E∗(z, s)◦2 (with m = 1 in our usual notation, and

normalized as in Section 17.1) admits the classical expression

E∗(z, s)◦2 = −
π−s+1/2

8π2
Γ(s+ 3/2)ζ(2s+ 1)

∑
c,d∈Z
(c,d)=1

ys−1/2

(cz + d)2|cz + d|2(s−1/2)
(22.2.9)

for z = x+iy ∈ H, where H ⊆ C is the usual upper-half space (here z corresponds to z♭ in Theorem

22.1.1(2)).

For nonzero j ∈ Z, the (normalized) j-th Fourier coefficient of E∗(z, s)◦2 factorizes into (normal-

ized) local Whittaker functions

E∗
j (y, s)

◦
2 =W ∗

j,∞(y, s)◦2
∏
p

W ∗
j,p(s)

◦
2 (22.2.10)

as in Section 17.1. We have the formulas

W ∗
j,p(s)

◦
2 = pvp(j)(s+1/2)σ−2s(p

vp(j))
∏
p

W ∗
j,p(s)

◦
2 = |j|s+1/2σ−2s(|j|) (22.2.11)

where vp(−) means p-adic valuation and

σs(|j|) :=
∑
d||j|

ds (22.2.12)

is the classical divisor function. These formulas for local Whittaker functions are likely classical,

but they also follow from (18.2.8) on local densities (translation to local Whittaker functions via

(15.5.6)). A integral expression for W ∗
j,∞(y, s)◦2 may be found in Section 19.2. For j > 0, recall

W ∗
j,∞(y, 1/2)◦2 = 1 (15.2.6).

We require j > 0 for the rest of Section 22.2. Fix an embedding F → C. Given a CM elliptic

curve (E0, ι0, λ0) ∈M0(C), we consider the set of j-th Hecke translates of E0 given by

Tj(E0) := {(E0, ι0, λ0, E, w) ∈ Tj(C)}. (22.2.13)
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Phrased alternatively, the fiber of Tj →M0 over the point SpecC→M0 corresponding to E0 is a

finite scheme over SpecC, and Tj(E0) is its set of C-points. We set

deg Tj(E0) := |Tj(E0)| hFal(Tj(E0)) :=
∑

E∈Tj(E0)

hFal(E) (22.2.14)

where |−| denotes set cardinality, the sum runs over (E0, ι0, λ0, E, w) ∈ Tj(E0), and hFal(E) denotes

the Faltings height of E (with metric normalized as in (4.3.1), see also Section 9.1) after descending

from C to any number field.

The following lemma states that the (total) Faltings height of j-th Hecke translates of a chosen

elliptic curve with CM by OF does not depend on the choice of CM elliptic curve. It should admit

a general formulation in terms of Hecke correspondences over M0. We give a more elementary

treatment in the spirit of this section.

Lemma 22.2.1. Fix j ∈ Z>0. For any (E0, ι0, λ0) ∈M0(C) and (E′
0, ι

′
0, λ

′
0) ∈M0(C), we have

deg Tj(E0) = deg Tj(E′
0) hFal(Tj(E0)) = hFal(Tj(E′

0)). (22.2.15)

Proof. Given any d ∈ Z, we claim that there exists an isogeny ϕ : E′
0 → E0 of degree prime to d.

Consider

E0(C) = C/Λ0 E′
0(C) = C/Λ′

0 (22.2.16)

for lattices Λ0 and Λ′
0. Without loss of generality, we may assume Λ0 = OF ⊆ C and that Λ′

0 = a′0
for some fractional ideal a′0 ⊆ C. By the Chinese remainder theorem, we can assume a′0 ⊆ OF and

that a′0 has norm prime to d (without changing the ideal class of a′0). The inclusion a′0 ⊆ OF gives

an isogeny E′
0 → E0 of degree prime to d.

Let p be any prime. Let ϕ : E′
0 → E0 be an isogeny of degree prime to pj. As above, we view

ϕ : E0(C) → E′
0(C) as an inclusion of lattices Λ′

0 → Λ0 of index prime to pj. There is an induced

bijection

Tj(E0) Tj(E′
0)

Λ Λ ∩ Λ′
0.

(22.2.17)

We are viewing Λ as the element C/Λ→ C/Λ0 of Tj(E0), and similarly for Λ ∩ Λ′
0.

The isogeny C/(Λ ∩ Λ′
0) → C/Λ has degree deg ϕ, which is prime to p. As these elliptic curves

are defined over Q, this isogeny also descends to Q. By the formula for change for Faltings height

along an isogeny (9.2.4), we conclude hFal(Tj(E0)) − hFal(Tj(E′
0)) ∈

∑
ℓ|deg ϕQ · log ℓ. Varying p

shows hFal(Tj(E0)) = hFal(Tj(E′
0)), as the real numbers log p are Q-linearly independent for varying

p. □

Consider any (E0, ι0, λ0) ∈ M0(C). Using (22.2.6) (Kudla–Rapoport cycle pulls back to Hecke

correspondence), the geometric Siegel–Weil statement in Remark 21.1.2 implies

h2F
wF

deg Tj(E0) = 2
h2F
w2
F

E∗
j (y, 1/2)

◦
2 (22.2.18)

for any y ∈ R>0. On the left, one factor of hF appears because the Serre tensor morphism

iSerre : Mell → M (1, 1)◦ is the inclusion of one connected component (and M (1, 1)◦ has hF con-

nected components, by the action of Cl(OF ) discussed above; we discussed that this action is
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compatible with Kudla–Rapoport cycles). On the left, the additional factor hF /wF appears via

Lemma 22.2.1 (instead of summing over M0(C), it is enough to consider a fixed E0 and multiply

by hF /wF = degC(M0 ×SpecOF
SpecC)).

By the formulas in (22.2.11) and surrounding discussion, this recovers the well-known identity

deg Tj(E0) = σ1(j) for degrees of Hecke correspondences (recall our running assumption |O×
F | =

{±1} for most of Section 22.2, i.e. wF = 2).

In the next lemma, hCM
Fal = hFal(E0) is the Faltings height of any elliptic curve with CM by OF

(4.3.5). It is well known that this does not depend on the choice of CM elliptic curve (also follows

from Lemma 22.2.1).

Corollary 22.2.2. Suppose 2 is split in OF . For any integer j > 0 and any CM elliptic curve

(E0, ι0, λ0) ∈M0(C), we have

hFal(Tj(E0))− σ1(j) · hCM
Fal =

1

2

d

ds

∣∣∣∣
s=1/2

(
js+1/2σ−2s(j)

)
. (22.2.19)

Proof. Set n = 2 and consider the 2 × 2 matrix T = diag(0, j). Again using (22.2.6) to pull back

Kudla–Rapoport cycles to Hecke correspondences, we have

2
h2F
wF

(
2hFal(Tj(E0))− 2(deg Tj(E0)) · hCM

Fal

)
= −2

∑
p

IntH ,p,global(T ) (22.2.20)

in our previous notation (Remark 22.1.4). On the left, the outer factor of 2 has the same explana-

tion as in (22.1.32) (see following discussion). The factor h2F /wF has the same explanation as in

(22.2.18), via Lemma 22.2.1 on Faltings height. The factor of 2 in 2hFal(Tj(E0)) appears because

hFal(E⊗ZOF ) = hFal(E×E) = 2hFal(E). The factor of 2 in 2(deg Tj(E0)) ·hCM
Fal is the n in Remark

22.1.4.

In our previous notation, we have IntV ,p,global(T ) = 0 for all primes p as the vertical special

cycle class LZ(T )V ,p is 0 when n = 2 (Lemma 11.7.6). Hence Intp,global(T ) = IntH ,p,global(T ) +

IntV ,ℓ,global(T ) = IntH ,p,global(T ).

Then (22.1.22) (“horizontal local part” of our main result) implies

Intp,global(T ) = −
2h2F
w2
F

(
d

ds

∣∣∣∣
s=1/2

W ∗
j,p(s)

◦
2

)∏
ℓ̸=p

W ∗
j,ℓ(1/2)

◦
2 (22.2.21)

for all p (in the notation of loc. cit., take T ♭ = j, a♭v = 1 for all v < ∞, and recall our notation

W̃ ∗
T ♭,v

(1, s)◦n =W ∗
T ♭,v

(s)◦n). Since j > 0, we have used W ∗
j,∞(1/2)◦2 = 1 (15.2.6) as recalled above.

Combining (22.2.21) and (22.2.20) along with the formula deg Tj(E0) = σ1(j), we obtain

hFal(Tj(E0))− σ1(j) · hCM
Fal =

1

2

d

ds

∣∣∣∣
s=1/2

(∏
p

W ∗
j,p(1/2)

◦
2

)
(22.2.22)

where the product runs over all primes (not including the Archimedean place). The corollary now

follows from the formulas in (22.2.11). □
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Appendices

Appendix A. K0 groups

A.1. K0 groups for Deligne–Mumford stacks. Suppose X is a Noetherian Deligne–Mumford

stack. There are at least two different ways one might define K0 groups for X . One way is to

define a K-theory spectrum for X using the K-theory spectra of schemes in the small étale site

of X , as in [Gil09, §2]. This is the approach used in [HM22]. Another way is to simply mimic a

definition of K0 for schemes and consider perfect complexes on the small étale site of X . These

two approaches will in general result in different K0 groups [HM22, Remark A.2.4]. At least if X is

regular (and, say, with the additional running hypotheses of [HM22, Appendix A]), there is a map

from the latter K0 group to the former K0 group [HM22, (A.7),(A.8)].

In this paper, we take the latter approach and mimic constructions for schemes to define K0(X ).
Our definitions and notation will be analogous to those for schemes in [SProject, Section 0FDE].

When defining dimension/codimension filtrations on K ′
0(X ) (with notation and hypotheses as be-

low), we will require existence of a finite flat cover by a scheme (enough for our intended application).

A similar approach appears in [YZ17, Appendix A] (at least for K ′
0), but there the stacks are over

a base field. We need a slightly more general setup which allows base schemes such as SpecR for

Dedekind domains R.

Suppose X is a Deligne–Mumford stack. By an OX -module48 , we mean a sheaf of modules on the

small étale site49 of X . Similarly, quasi-coherent OX -modules will mean quasi-coherent sheaves of

modules on the small étale site. When X is locally Noetherian, we will also speak of coherent OX -

modules on the small étale site, which are the same as finitely presented quasi-coherent OX -modules

in this situation.

Suppose X is a locally Noetherian Deligne–Mumford stack. The category Coh(OX ) of coherent

OX -modules forms a weak Serre subcategory of the abelian category Mod(OX ) of OX -modules

(reduce to the case of small étale sites of schemes and apply [SProject, Lemma 05VG, Lemma

0GNB]). We may form derived categories such as

D(OX ) Db(OX ) Dperf(OX ) Db
Coh(OX ) Db(Coh(OX )) (A.1.1)

which denote the derived category of OX -modules, bounded derived category of OX -modules, de-

rived category of perfect objects (definition as in [SProject, Section 08G4]) in D(OX ), bounded

48This is one of the only places where our conventions differ from the Stacks project [SProject, Chapter 06TF],

which mostly works with sheaves on big sites (say, fppf and étale) for general algebraic stacks. Restriction from these

two big sites to the small étale site (for Deligne–Mumford stacks) induces equivalences on categories of quasi-coherent

sheaves. But the equivalences are not compatible with pushforward, and are also not compatible with exactness for

OX -modules on big sites versus small sites.
49The small étale site is as defined in [DM69, Definition 4.10]: the underlying category has objects which are

pairs (U, f) for f : U → X an étale morphism (definition as in [SProject, Definition 0CIL]) from a scheme U , and

morphisms are pairs (g, ξ) : (U, f) → (U ′, f ′) where g : U → U ′ is a 1-morphism and ξ : f → f ′ ◦ g is a 2-isomorphism.
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derived category of OX -modules with coherent cohomology, and the bounded derived category of

coherent OX -modules, respectively.

If X happens to be a scheme, then Dperf(OX ) and D
b
Coh(OX ) and D

b(Coh(OX )) will agree with

the usual constructions using the small Zariski site instead of the small étale site, via comparison

results such as [SProject, Lemma 08HG, Lemma 071Q, Lemma 05VG].

Definition A.1.1. Let X be a locally Noetherian Deligne–Mumford stack. We set

K0(X ) := K0(Dperf(OX )) K ′
0(X ) := K0(Coh(OX )). (A.1.2)

Above, the left expression means K0 of a triangulated category and the right expression means

K0 of an abelian category. If X is a locally Noetherian Deligne–Mumford stack, we have canonical

identifications

K0(Coh(OX )) = K0(D
b(Coh(OX ))) = K0(D

b
Coh(OX )) (A.1.3)

as in [SProject, Lemma 0FDF] (the case of schemes) by general facts about derived categories (see

also [SProject, Lemma 0FCS]).

If X is a quasi-compact locally Noetherian Deligne–Mumford stack, there is an inclusionDperf(OX )→
Db

Coh(OX ) and a corresponding group homomorphism K0(X ) → K ′
0(X ). If X is a regular lo-

cally Noetherian Deligne–Mumford stack (not necessarily quasi-compact), there is an inclusion

Db
Coh(OX ) → Dperf(OX ) and a corresponding group homomorphism K ′

0(X ) → K0(X ). If X is

a locally Noetherian Deligne–Mumford stack which is both quasi-compact and regular, we have

Dperf(OX ) = Db
Coh(OX ) and a corresponding isomorphism

K0(X )
∼−→ K ′

0(X ). (A.1.4)

These claims follow from the corresponding facts for schemes [SProject, Lemma 0FDC] and com-

parison results mentioned previously.

The derived tensor product ⊗L on D(OX ) gives K0(X ) the structure of a commutative ring.

Compatibility of ⊗L with the case when X is also a scheme follows from the displayed equation in

the proof of [SProject, Lemma 08HF] (comparison between the small Zariski and small étale sites).

We next describe dimension and codimension filtrations. Our setup for dimension theory is as in

[SProject, Section 02QK]. That is, we work over a locally Noetherian and universally catenary base

scheme S with a dimension function δ : |S| → Z (which we typically suppress). Typical setups will

be S = SpecR for R a field or Dedekind domain, where δ is the dimension function sending closed

points to 0. Any Deligne–Mumford stack X which is quasi-separated and locally of finite type over

S inherits a dimension function δX : |X | → Z (work étale locally to pass to the case of schemes;

the case of algebraic spaces is [SProject, Section 0EDS]). If X is equidimensional of dimension n,

then n− δX is also the codimension function (given by dimensions of local rings on étale covers by

schemes).

For a scheme X which is locally of finite type over S, consider the full subcategory Coh≤d(OX) ⊆
Coh(OX) consisting of coherentOX -modules F with dim(Supp(F)) ≤ d. Then there is an increasing

dimension filtration on K ′
0(X) = K0(Coh(OX)) given by the image

FdK
′
0(X) := im(K0(Coh≤d(OX))→ K0(Coh(OX))) (A.1.5)
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as in [SProject, Section 0FEV]. We similarly consider the full subcategory Coh≥m(OX) ⊆ Coh(OX)
of coherent sheaves supported in codimension ≥ m, and form the decreasing codimension filtration

FmK ′
0(X) := im(K0(Coh

≥m(OX))→ K0(Coh(OX))). (A.1.6)

When X is equidimensional of dimension n, we have FmK ′
0(X) = Fn−mK

′
0(X).

For the case of Deligne–Mumford stacks, one could consider naive dimension/codimension filtra-

tions on K ′
0(X ) by mimicking the definition for schemes. This may not be a well-behaved notation,

and we instead take the filtration defined in [YZ17, A.2.3] (with Q-cofficients).

Definition A.1.2. For S as above, let X be a Deligne–Mumford stack which is quasi-separated

and locally of finite type over S. Suppose there exists a finite flat surjection π : U → X from a

scheme U . Pick such a morphism π.

The dimension filtration on K ′
0(X )Q is the increasing filtration given by

FdK
′
0(X )Q := {β ∈ K ′

0(X )Q : π∗β ∈ FdK ′
0(U)Q} ⊆ K ′

0(X )Q (A.1.7)

for d ∈ Z. If X is equidimensional, we also consider the decreasing codimension filtration onK ′
0(X )Q

given by

FmK ′
0(X )Q := {β ∈ K ′

0(X )Q : π∗β ∈ FmK ′
0(U)Q} ⊆ K ′

0(X )Q. (A.1.8)

for m ∈ Z.

For X as in the preceding definition, the filtrations just defined give rise to graded pieces

grdK
′
0(X )Q := FdK

′
0(X )Q/Fd−1K

′
0(X )Q and grmK ′

0(X )Q := FmK ′
0(X )Q/Fm+1K ′

0(X )Q. If X as

above is equidimensional of dimension n, we have FmK ′
0(X )Q = Fn−mK

′
0(X )Q for all m ∈ Z.

Lemma A.1.3. With notation as in Definition A.1.2, the filtrations FdK
′
0(X )Q and FmK ′

0(X )Q
do not depend on the choice of finite flat surjection π : U → X . If X is a scheme, these filtrations

recovers the usual filtrations.

Proof. Suppose X is a scheme which is locally of finite type over S. If Zd(X) is the group of d-cycles

on X, recall that there is an identification

K0(Coh≤d(OX)/Coh≤d−1(OX))
∼−→ Zd(X) (A.1.9)

which is compatible with flat pullback of constant relative dimension and finite pushforward [SPro-

ject, Lemma 02S9, Lemma 0FDR] (see also [SProject, Lemma 02MX]). For any finite flat surjection

π : U → X of constant degree a, the map π∗π
∗ : Zd(X)→ Zd(X) is multiplication by a. It follows

that π∗π
∗ : FdK

′
0(X)/Fd−1K

′
0(X) → FdK

′
0(X)/Fd−1K

′
0(X) is multiplication by a. This is an iso-

morphism after tensoring by Q. When X is equidimensional, this gives the corresponding statement

for the codimension filtration as well. This verifies the lemma when X is a scheme.

Let X is a Deligne–Mumford stack as in the lemma statement. Let π : U → X and π′ : U ′ → X
be two finite flat surjections, for schemes U and U ′. Consider the fiber product U ×X U ′ with its

finite flat projections to U and U ′. We then apply the preceding discussion to see that the filtrations

do not depend on the choice of finite flat surjection.

These arguments are essentially the same as in [YZ17, A.2.3] (the arguments of loc. cit. are over

a base field, so we have used different references). □
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Remark A.1.4. As in [YZ17, A.2.3], it is possible to have FdK
′
0(X )Q ̸= 0 for d < 0 in the situation

of Definition A.1.2.

We are mainly interested in K0 groups for the purpose of intersection theory, so we next discuss

degree theory over a field. Suppose S = Spec k for a field k, and suppose X is a Deligne–Mumford

stack which is proper over S. Again assuming that X admits a finite flat surjection from a scheme,

there is a graded group homomorphism gr∗K
′
0(X )Q → Ch∗(X )Q as defined in [YZ17, A.2.6] (pass

to a finite flat surjection to reduce to the case of schemes).

There is a degree map deg : Ch0(X )Q → Q on 0-cycles which may be described as follows.

Suppose Z is a quasi-separated finite type Deligne–Mumford stack over Spec k with separated

diagonal, and assume the underlying topological space |Z| is a single point. If V → Z is any finite

flat surjection from a scheme V (which exists as in Remark 4.1.1), one can check that V is finite

over Spec k and we take

deg(Z) := degk(Z) :=
degk(V )

degZ(V )
(A.1.10)

where degk(V ) (resp. degZ(V )) is the degree of the finite flat morphism V → Spec k (resp. V → Z).
It is straightforward to see that degk(Z) does not depend on the choice of V → Z (compare [Vis89,

Definition 1.15]). This generalizes immediately to the case where |Z| is instead a discrete finite set

(add the degrees of its components). When Z = ∅, we take deg(Z) := 0.

There is an induced degree map

deg : gr0K
′
0(X )Q → Q. (A.1.11)

Consider a class β =
∑

i bi[Fi] ∈ F0K
′
0(X )Q where each Fi is a coherent sheaf on X (we do not

assume [Fi] ∈ F0K
′
0(X )Q for any given i). Select any finite flat surjection π : U → X with U a

scheme. If π has constant degree a, we have

deg(β) =
1

a
deg(π∗β) =

1

a

∑
i

bi · χ(π∗Fi) (A.1.12)

where χ denotes Euler characteristic. We can give a similar description for general finite flat

surjections π by decomposing X into its connected components. On account of (A.1.12), we may

write χ(β) := deg(β) and think of χ : gr0K
′
0(X )Q → Q as a “stacky Euler characteristic” (compare

usage in [KR14, Definition 11.4]). We caution, however, that we have only defined χ on gr0K
′
0(X )Q

and have not defined χ(F) for a general coherent sheaf F on X .
We conclude this subsection with a lemma which we will use to decompose K ′

0(X ) in terms of

irreducible components of X . A similar lemma for formal schemes is [Zha21, Lemma B.1].

Lemma A.1.5. Let X be a locally Noetherian Deligne–Mumford stack. Let π1 : Z1 → X and

π2 : Z2 → X be closed immersions of Deligne–Mumford stacks with corresponding ideal sheaves I1
and I2. Assume that the diagonals of X , Z1, and Z2 are representable by schemes (e.g. if X is

separated).
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Assume that X = Z1 ∪ Z2 scheme-theoretically (meaning I1 ∩ I2 = 0). There are mutually

inverse isomorphisms

K′
0(X )

K′
0(Z1∩Z2)

K′
0(Z1)

K′
0(Z1∩Z2)

⊕ K′
0(Z2)

K′
0(Z1∩Z2)

[F ] ([π∗1F1], [π
∗
2F2])

[π1,∗F1] + [π2,∗F2] ([F1], [F2]) .

(A.1.13)

Here, F , F1, and F2 stand for coherent sheaves on X , Z1, and Z2 respectively.

Proof. The condition about diagonals is included for technical convenience. Some additional ex-

planation on notation in the lemma statement: the symbol Z1 ∩ Z2 denotes the closed substack

Z1×X Z2 of X , with associated ideal sheaf I1+I2, and we have also written K ′
0(X )/K ′

0(Z1∩Z2) :=

coker(K ′
0(Z1 ∩ Z2)→ K ′

0(X )) etc. (the latter map may not be injective).

Consider the short exact sequence

0→ OX /(I1 ∩ I2)→ OX /I1 ⊕OX /I2 → OX /(I1 + I2)→ 0. (A.1.14)

Tensoring by any coherent sheaf F on X , we find that TorOX
1 (F ,OX /I1) is an OX /(I1+I2)-module,

and similarly with I2 instead of I1. This shows that the displayed projection maps F 7→ π∗1F
and F 7→ π∗2F are well-defined (i.e. that they are additive in short exact sequences and hence

descend to the given quotients of K ′
0-groups). Since TorOX

1 (F ,OX /(I1 + I2)) is an OX /(I1 + I2)-
module, the Tor long exact sequence of the displayed short exact sequence also shows that [F ] =
[F ⊗OX OX /I1] + [F ⊗OX OX /I2] in K ′

0(X )/K ′
0(Z1 ∩ Z2). □

A.2. K0 groups with supports along finite morphisms. Suppose X is a separated regular

Noetherian scheme. There is an established intersection theory for K0 groups with supports along

closed subsets of X, and the intersection pairing is multiplicative with respect to codimension

filtrations (after tensoring by Q) [GS87]. However, we will need a slightly more general setup which

allows for “supports along finite morphisms”. This is needed because the special cycles Z(T )→M
(Section 3.3) are not literally cycles but are instead finite unramified morphisms.

Intersection theory with supports along finite morphisms is also discussed in [HM22, Appendix

A.4] for a similar purpose. They are not able to show the codimension filtration is multiplicative

in general [HM22, Remark A.4.2], but can show multiplicativity for intersections against classes

of codimension 1 (in the case of supports along finite unramified morphisms) [HM22, Proposition

A.4.4].

We have two main objectives in this section (besides fixing notation). Our first objective is to

comment on another situation where the codimension filtration is multiplicative (namely, when

the finite supports become disjoint unions of closed immersions after finite flat base change to a

regular scheme). The (short) proof reduces to the case of supports along closed immersions. This

is relevant for us because of Lemma 3.4.5, which says that each special cycle Z(T )→M becomes a

disjoint union of closed immersions after finite étale base change, at least after inverting the prime

p in the cited lemma. ForM associated to a Hermitian lattice of signature (n− r, r), intersecting
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special cycles overM involves multiplicativity for classes of codimension r (not covered by [HM22,

Proposition A.4.4] when r > 1).

Our second objective is to explain intersection theory with supports along finite morphisms of

Deligne–Mumford stacks in terms of the K0 groups of Appendix A.1. A stacky theory is also

considered in [HM22, Appendix A.4], but the K0 groups we use are slightly different (as discussed

at the beginning of Appendix A.1). The setup we consider agrees with [HM22, Appendix A.4] for

schemes.

Lemma A.2.1. Consider a 2-commutative diagram of algebraic stacks

Z ×X W W

Z X

h g

f

(A.2.1)

with outer square 2-Cartesian, where X is a separated regular Noetherian Deligne–Mumford stack

and the morphisms f and g (and hence h) are finite.

There is a bilinear pairing

K ′
0(Z)×K ′

0(W) K ′
0(Z ×X W)

(F ,G)
∑

i(−1)iTor
OX
i (f∗F , g∗G)

(A.2.2)

where F and G stand for coherent OZ-modules and coherent OW-modules, respectively. We have a

commutative diagram

K ′
0(Z)×K ′

0(W) K ′
0(Z ×X W)

K ′
0(X )×K ′

0(X ) K ′
0(X )

f∗×g∗ h∗ (A.2.3)

where vertical arrows are pushforward and the lower horizontal arrow is the bilinear pairing from

the ring structure on K ′
0(X ) ∼= K0(X ).

Proof. If F is a coherent OZ -module and G is a coherent OW -module, we may form the object

(f∗F ⊗L g∗G) in Dperf(OX ). For each object U → X in the small étale site of X (i.e. U is a scheme

with an étale morphism to X ), the restriction (f∗F ⊗L g∗G)|U ∈ Dperf(OU ) carries natural OU -
linear actions of (f∗OZ)|U and (f∗OW)|U . The resulting cohomology sheaves TorOX

i (f∗F , g∗G) =
H−i(f∗F⊗L g∗G) (a priori coherent OX -modules) are thus sheaves of (f∗OZ)⊗OX (g∗OW)-algebras.

There is a canonical isomorphism (f∗OZ) ⊗OX (g∗OW) → h∗OZ×XW of OX -algebras. Since h is

affine, we obtain a lift (up to canonical isomorphism) of each TorOX
i (f∗F , g∗G) to a coherent sheaf of

OZ×XW modules (to pass between quasi-coherent h∗OZ×XW -modules and quasi-coherent OZ×XW -

modules, we may take an étale surjection of X from a scheme, use the corresponding result for

the small étale site of schemes which is [SProject, Lemma 08AI], and reduce to a statement about

glueing data on the small étale sites of Z ×X W and X ).
The procedure just described descends to K ′

0 groups and gives the pairing in the lemma state-

ment. □
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We think of the mapK ′
0(Z)×K ′

0(W)→ K ′
0(Z×XW) from the preceding lemma as an intersection

pairing “with supports along finite morphisms”.

Next, fix a base scheme S with dimension function δ as in Appendix A.1. Suppose X is a

Deligne–Mumford stack which is quasi-separated and locally of finite type over S. We assume that

X is equidimensional of dimension n, and we also assume that X admits a finite flat surjection

from a scheme in order to define dimension and codimension filtrations as in Definition A.1.2.

Consider a finite morphism f : Z → X from a Deligne–Mumford stack Z. We define a “relative

codimension” filtration on K ′
0(Z)Q by setting

FmX K
′
0(Z)Q := Fn−mK

′
0(Z)Q. (A.2.4)

We similarly set grmXK
′
0(Z)Q := FmX K

′
0(Z)Q/F

m+1
X K ′

0(Z)Q. The subscript X is meant to remind of

the dependence on X .

Lemma A.2.2. Let X be a regular Noetherian Deligne–Mumford stack which is separated and

finite type over S. Assume that X is equidimensional. Let f : Z → X and g : W → X be finite

morphisms from Deligne–Mumford stacks Z and W.

Assume that there exists a finite flat surjection π : U → X with U a regular Noetherian scheme,

such that Z ×X U → U and W×X U → U are both disjoint unions of closed immersions. Then the

intersection pairing of Lemma A.2.1 restricts to a pairing

F sXK
′
0(Z)Q × F tXK ′

0(W)Q → F s+tX K ′
0(Z ×X W)Q (A.2.5)

for any s, t ∈ Z.

Proof. We use the shorthand ZU := Z ×X U and WU := W ×X U . If we abuse notation and also

write π for the natural projections ZU → Z and WU → W and ZU ×U WU → Z ×X W, we have

(π∗α) · (π∗β) = π∗(a · β) for any α ∈ K ′
0(Z)Q and β ∈ K ′

0(W)Q. By definition of the dimension

filtration (Definition A.1.2), it is enough to check that the intersection pairing over U restricts to

F sUK
′
0(ZU )Q × F tUK ′

0(WU )Q → F s+tU K ′
0(ZU ×U WU )Q (A.2.6)

(i.e. respects filtrations). We have thus reduced to the case where X is a scheme and Z → X
and W → X are disjoint unions of closed immersions, and we assume these conditions hold for

the rest of the proof. Write Z =
∐
iZi where each Zi → X is a closed immersion of schemes,

and similarly write W =
∐
jWj . By a result of Gillet–Soulé [GS87, Proposition 5.5], the pairing

F sXK
′
0(Zi)Q × F tXK

′
0(Wj)Q → K ′

0(Zi ×X Wj)Q factors through F s+tX K ′
0(Zi ×X Wj)Q. We may

decompose F sXK
′
0(Z)Q =

⊕
i F

s
XK

′
0(Zi)Q and F tXK

′
0(W)Q =

⊕
j F

t
XK

′
0(Wj)Q. Commutativity of

the diagram

F sXK
′
0(Zi)Q × F tXK ′

0(Wj)Q F s+tX K ′
0(Zi ×X Wj)Q

(
⊕

i F
s
XK

′
0(Zi)Q)× (

⊕
j F

t
XK

′
0(Wj)Q) K ′

0(Z ×X W)Q

(A.2.7)

for each i, j gives the claim. □
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Appendix B. Miscellany on p-divisible groups

We collect some terminology/notation and miscellaneous facts about p-divisible groups, which

we use freely.

B.1. Terminology. Suppose S is a formal scheme50 and suppose P is a property of morphisms of

schemes which is fppf local on the target and stable under arbitrary base-change. A sheaf X on

(Sch/S)fppf is represented by a relative scheme with property P over S if, for every scheme T over

S, the restriction sheaf X|T is represented by a scheme with property P over T .

Fix a prime p. A p-divisible group over a formal scheme S is a sheaf X of abelian groups on

(Sch/S)fppf which satisfies the following conditions.

(1) (p-divisibility) The multiplication by p map [p] : X → X is a surjection of sheaves.

(2) (p∞-torsion) The natural map X[p∞] := lim−→n
X[pn]→ X is an isomorphism, where X[pn] ⊆

X are the pn-torsion subsheaves.

(3) (representable p-power-torsion) The sheaves X[pn] are represented by finite locally free

relative schemes over S for all n ≥ 1.

If S is an adic (e.g. locally Noetherian) formal scheme and I is an ideal sheaf of definition on

S, giving a p-divisible group over S is the same as giving p-divisible groups Xn over each scheme

Sn := (S,OS/I n) with isomorphisms Xn+1|Sn

∼−→ Xn.

For a general formal scheme S, we say a p-divisible group X over S has height h if X[p] is finite

locally free relative scheme over S of degree ph. In general, h is understood as a locally constant

function on S.

If p is locally topologically nilpotent on S (equivalently, S is a formal scheme over Spf Zp) and if

X is a p-divisible group over S, there is an associated sheaf LieX on (Sch/S)fppf (constructed as

in [SGA3II, Definition 3.2]). By work of Messing [Mes72, Theorem 3.3.18], it is known that LieX

is a finite locally free sheaf of modules on (Sch/S)fppf . We refer to the dual ΩX := (LieX)∨ as a

Hodge bundle. If r is the rank of LieX, we say that X has dimension r (in general, r is a locally

constant Z≥0-valued function). In this case, we write ωX :=
∧r ΩX for the top exterior power and

also call ωX a Hodge bundle.

If p is locally topologically nilpotent on the formal scheme S, a formal p-divisible group X over S is

a p-divisible group over S such that, fppf (equivalently, Zariski) locally on any T ∈ Obj(Sch/S)fppf ,

the pointed fppf sheaf X is isomorphic to Spf OT [[x1, . . . , xr]] for some r (possibly varying). See

[Mes72, Proposition II.4.4] for equivalent characterizations.

Given p-divisible groups X and Y over a general formal scheme S, a quasi-homomorphism is

a global section of the sheaf Hom(X,Y ) ⊗Z Q on (Sch/S)fppf . We write Hom0(X,Y ) for the

space of quasi-homomorphisms X → Y , and similarly End0(X) = Hom0(X,X). Given a quasi-

compact scheme T with a map T → S, we have Hom0(XT , YT ) = Hom(XT , YT ) ⊗Z Q. If X and

Y are equipped with an action by a ring R, then Hom0
R(X,Y ) will denote the R-linear quasi-

homomorphisms.

50The formal schemes we use are the “préschémas formels” of [EGAI, §10]. Given a formal scheme, the notation

(Sch/S)fppf means the site whose objects are morphisms T → S for schemes T , where coverings are fppf.
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A morphism f : X → Y of p-divisible groups over S is an isogeny if f is a surjection of fppf

sheaves and ker f is represented by a finite locally free relative scheme over S. If ker f is finite

locally free of rank pr, we say that f has degree pr and height r. A quasi-isogeny f : X → Y

is a quasi-homomorphism which, locally on (Sch/S)fppf , is of the form f = png for n ∈ Z and

an isogeny g. If the p-divisible group X has height h, such a quasi-isogeny f = png is said to

have degree pnh deg(g) and height nh + height(g). We write Isog(X,Y ) (resp. Isog0(X,Y )) for

the isogenies (resp. quasi-isogenies) X → Y . We write Isog(X) (resp. Isog0(X)) for self-isogenies

(resp. self quasi-isogenies) of X.

A p divisible group X over S is étale if X[p] is an étale relative scheme. This implies that each

X[pn] is an étale relative scheme. If R is a Noetherian Henselian local ring, we say that a p-divisible

group X over SpecR is connected if X[p] is connected. This implies that each X[pn] is connected.

Given any p-divisible group X over a general formal scheme S, there is a dual p-divisible group

X∨. A polarization of X is an isogeny λ : X → X∨ satisfying λ∨ = −λ. The polarization is

principal if λ is an isomorphism. A quasi-polarization is a quasi-isogeny f : X → X∨ such that

mf is a polarization for some m ∈ Q×
p . Suppose X and Y are p-divisible groups over S with

quasi-polarizations λX : X → X∨ and λY : Y → Y ∨. Given any x ∈ Hom0(Y,X) with dual

x∨ ∈ Hom0(X∨, Y ∨), we set x† := λ−1
Y ◦ x∨ ◦ λX ∈ Hom0(X,Y ), and call the resulting map

† : Hom0(Y,X)→ Hom0(X,Y ) the Rosati involution.

Over an algebraically closed field, we say that a p-divisible group is supersingular if all slopes of

its isocrystal are equal to 1/2, and we say that it is ordinary if all slopes of its isocrystal are either

0 or 1. A p-divisible group over an arbitrary formal scheme is supersingular (resp. ordinary) if it

is supersingular (resp. ordinary) for every geometric fiber.

Over any algebraically closed field, there is a unique étale p-divisible group of height r (namely

the constant sheaf (Qp/Zp)r). Over any algebraically closed field of characteristic p, there is also

a unique p-divisible group of height r with all slopes of its isocrystal being 1 (namely µµµrp∞ :=

(lim−→e
µµµpe)

r ∼= (Qp/Zp∨)r, given by p-th power roots of unity). Since the connected étale ex-

act sequence of any p-divisible group over a perfect field is (canonically) split, we conclude that

µµµn−rp∞ × (Qp/Zp)r is the unique ordinary p-divisible group of height n and dimension n− r over any

algebraically closed field.

By Drinfeld rigidity we mean the following phenomenon: if S0 → S is a finite order thickening of

schemes over Spf Zp, and X,Y are p-divisible groups over S, any quasi-homomorphism of X → Y

over S0 lifts uniquely to a quasi-homomorphism over S [And03, Theorem 2.2.3] (alternative proof:

Grothendieck–Messing theory).

If A is a relative abelian scheme over a general formal scheme S, there is an associated p-divisible

group A[p∞] := lim−→n
A[pn], where A[pn] is the pn-torsion subfunctor of A. If p is locally topologically

nilpotent on S, there is a canonical identification LieA ∼= LieA[p∞].

Given a p-divisible group X over a formal scheme S and given a finite free Zp-moduleM of some

rank d ≥ 0, there is the Serre tensor construction p-divisible group X ⊗Zp M given by the functor

(X ⊗Zp M)(T ) := X(T )⊗Zp M (B.1.1)
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for schemes T over S. Any choice of Zp-basis for M gives an isomorphism X ⊗Zp M
∼= Xd as

p-divisible groups. This construction is functorial in M : in particular, any Zp-algebra R acting

on M also acts on X ⊗Zp M . The resulting R-action on X ⊗Zp M is the Serre tensor R-action.

There is a canonical identification (X ⊗Zp M)∨ ∼= X∨ ⊗Zp M
∨ where M∨ := HomZp(M,Zp). More

generally, see [Con04, §7].

B.2. Isogeny criterion. We explain a criterion for a morphism of p-divisible groups to be an

isogeny (Lemma B.2.2). This should be well-known.51

Lemma B.2.1. Let S be a scheme, and let H, G, and Q be commutative group schemes over S

which are locally of finite presentation. Suppose

0→ H → G
f−→ Q→ 0

is an exact sequence of fppf sheaves of abelian groups. If G→ S is finite locally free and Q→ S is

separated, then

(1) The map f : G→ Q is finite locally free.

(2) The group schemes Q and H are finite locally free over S.

Proof. Since f is a surjection of fppf sheaves, it is a surjection on underlying topological spaces.

We also know that f is locally of finite presentation because both G and Q are locally of finite

presentation over S [SProject, Lemma 00F4]. Since G → S is flat, the fibral flatness criterion

[EGAIV3, 11.3.11] implies that flatness of f may be checked fiberwise over S, i.e. it is enough to

check flatness of the base-change Gk(s) → Qk(s) for each s ∈ S. The exact sequence

0→ Hk(s) → Gk(s) → Qk(s) → 0

shows that Gk(s) → Qk(s) is a Hk(s)-torsor in the fppf topology, hence flat. This shows that f is fppf.

Since Q → S is separated and G → S is finite, we know that f is also finite, hence finite locally

free. Moreover, the fibral flatness criterion also implies that Q is flat over S. We also conclude that

Q→ S is proper via [SProject, Lemma 03GN].

Since H = ker(f) and f is an fppf morphism, we know H → S is fppf as well. Since Q → S

is separated, the identity section S → Q is a closed immersion, hence H = ker(f) is a closed

subscheme of G. Since G→ S is finite, we conclude that H → S is also finite, hence finite locally

free.

We have already seen that Q → S is flat, proper, and locally of finite presentation. To check

that Q→ S is finite, it is enough to check that it has finite fibers, which follows because G→ Q is

surjective and G→ S is finite. □

Lemma B.2.2. Let S be a formal scheme. Let f : X → Y be a homomorphism of p-divisible groups

over S. Then f is an isogeny if and only if, locally on (Sch/S)fppf , there exists a homomorphism

g : Y → X such that

g ◦ f = [pN ] f ◦ g = [pN ]

for some integer N ≥ 0, where [pN ] denotes multiplication by pN .

51The only reference I know is the sketch in [Far05, Lemme 9]. We spell out the argument for completeness.
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Moreover, given an isogeny f , such g,N will exist globally on S if S is quasi-compact or has

finitely many connected components. If f is an isogeny of constant degree pn, we may take N = n.

Proof. If f : X → Y is an isogeny, then Y is the fppf sheaf quotient of X by ker(f). If S is a quasi-

compact formal scheme or if S has finitely many connected components, we have ker f ⊆ X[pN ]

for N large, so g ◦ f = [pN ] for some homomorphism g : Y → X. We also have f ◦ g ◦ f = [pN ] ◦ f .
Since f is an epimorphism of fppf sheaves, we conclude that f ◦ g = [pN ].

Conversely, suppose that locally on (Sch/S)fppf there exists a homomorphism g : Y → X and an

integer N ≥ 0 as in the lemma statement. Since the property of being an isogeny may be checked

locally on (Sch/S)fppf , we may assume that S is a scheme and that g,N exist globally on S. Since

f ◦ g = [pN ], we see that f is a surjection of fppf sheaves. It remains only to check that ker f is

representable by a finite locally free group scheme over S.

We know that ker(f) ⊆ X[pN ] and ker(g) ⊆ Y [pN ]. We have ker(f) = ker(X[pN ] → Y [pN ])

and ker(g) = ker(Y [pN ]→ X[pn]). Since X[pN ] and Y [pN ] represented by finite locally free group

schemes over S, we see that ker(f) and ker(g) are represented by schemes which are finite and

locally of finite presentation over S.

We have short exact sequences

0→ ker(f)→ X[pN ]
f−→ ker(g)→ 0

0→ ker(g)→ Y [pN ]
g−→ ker(f)→ 0

of fppf sheaves of abelian groups. By Lemma B.2.1, we conclude that ker(f) and ker(g) are finite

locally free group schemes over S. □

Lemma B.2.3. Let S be a formal scheme. Let X and Y be p-divisible groups over S. Then f ∈
Hom0(X,Y ) is a quasi-isogeny if and only if it is invertible, meaning there exists g ∈ Hom0(Y,X)

(necessarily unique) with f ◦ g = idY and g ◦ f = idX .

Proof. Invertibility and the property of being a quasi-isogeny can both be checked locally on

(Sch/S)fppf , so the lemma follows from Lemma B.2.2. □

B.3. p-divisible groups over SpecA and Spf A. The following facts are implicitly used, e.g.

throughout Parts 2 and 3.

Lemma B.3.1. Let A be an adic Noetherian ring. There are equivalences of categories

{finite schemes over SpecA} → {finite relative schemes over Spf A}

{finite locally free schemes over SpecA} → {finite locally free relative schemes over Spf A}

{p-divisible groups over SpecA} → {p-divisible groups over Spf A}

given by base change, i.e. restriction of fppf sheaves along the inclusion (Sch/ Spf A)fppf →
(Sch/SpecA)fppf .

Proof. For the statements about finite relative schemes, the quasi-inverse functor is given by

Spf R 7→ SpecR for finite A-algebras R (topologized so that R is an adic ring and the map A→ R

is adic). This also gives the quasi-inverse functor for finite locally free relative schemes (check using
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the local criterion for flatness). For the statement about p-divisible groups (which follows from the

other statements), see [Mes72, 4.15, Lemma II.4.16] or [dJo95, Lemma 2.4.4]. □

Lemma B.3.2. Let A be an adic Notherian ring, and let ϕ : X → Y be a homomorphism of p-

divisible groups over SpecA. Then ϕ is an isogeny if and only if ϕSpf A : XSpf A → YSpf A is an

isogeny.

Proof. Follows from Lemma B.3.1 and the isogeny criterion from Lemma B.2.2. □

For adic Noetherian rings A, we may thus pass between p-divisible groups over SpecA and Spf A

without loss of information, and similarly for finite locally free relative schemes. We abuse notation

in this way: for example, if A is a domain, the generic fiber of a p-divisible group over Spf A will

refer to its generic fiber as a p-divisible group over SpecA.

To avoid potential confusion, we remark on three situations where p-divisible groups may have

different properties when considered over SpecA versus over Spf A.

Remark B.3.3. Let A be an adic Noetherian ring, and suppose p is topologically nilpotent in A.

Let X be a p-divisible group over SpecA. By work of Messing, [Mes72, §II], the sheaf Lie(XSpf A)

(in the sense of [SGA3II]) is locally free of finite rank on (Sch/ Spf A)fppf . However, LieX (viewed

as a sheaf on (Sch/ SpecA)fppf ) is not necessarily locally free.

For example, consider A = Zp and X = µµµp∞ := lim−→µµµpn , where µµµpn is the group scheme of pn-th

roots of unity. Then the p-divisible group X over SpecZp is étale in the generic fiber, but connected

of dimension 1 in the special fiber. We find that LieX|SpecQp = 0 but LieX|SpecFp is free of rank

1, so LieX cannot be a locally free sheaf of modules on (Sch/ SpecA)fppf .

Thus, when writing LieX in this situation, we always mean (by abuse of notation) to view X as

a p-divisible group over Spf A, so that LieX will be a finite locally free sheaf on (Sch/ Spf A)fppf .

Similarly, if we say X has dimension r, we mean that the finite locally free sheaf LieX on

(Sch/ Spf A)fppf has rank r.

Remark B.3.4. Let A be an adic Noetherian ring, and let X be a p-divisible group over SpecA.

In general, there are sections of XSpf A → Spf A which do not arise as sections of X → SpecA.

Indeed, sections of X → SpecA correspond precisely to torsion sections of XSpf A → Spf A (use

quasi-compactness of SpecA). But XSpf A → Spf A may have many non-torsion sections, e.g. when

A = Zp and XSpf A is a formal p-divisible group, hence XSpf A
∼= Spf Zp[[X1, . . . , Xr]] as pointed

fppf sheaves on (Sch/ Spf Zp)fppf . There will be uncountably many non-torsion sections in this

situation. This makes a difference in Section 6.1, for example, where some statements are correct

over Spf R (which is the written version) but incorrect over SpecR.

Remark B.3.5. Let A be an adic Noetherian ring. By our conventions, it is not true that any

quasi-homomorphism of p-divisible groups over Spf A necessarily lifts to a quasi-homomorphism

of p-divisible groups over SpecA. See Example 7.1.1. On the other hand, homomorphisms and

isogenies will lift (uniquely) by the preceding lemmas.
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Appendix C. Quasi-compactness of special cycles

Besides fixing notation, the purpose of this appendix is to prove a quasi-compactness statement

for special cycles (explicit proofs of other properties, e.g. having finite fibers, are more readily

available in the literature, e.g. [KR14, Proposition 2.9]). A similar proof of quasi-compactness (in

the context of special divisors on some orthogonal Shimura varieties) is [AGHMP17, Proposition

2.7.2].

C.1. Terminology. Suppose A and B are abelian schemes over a base scheme S. We write

Hom(A,B) for the fppf sheaf (on S) of homomorphisms of abelian schemes. Then the sheaf of quasi-

homomorphisms is Hom0(A,B) := Hom(A,B)⊗Z Q. We write Hom0(A,B) for the space of global

sections and call elements x ∈ Hom0(A,B) quasi-homomorphisms, sometimes writing x : A → B.

If S is quasi-compact, we have Hom0(A,B) = Hom(A,B) ⊗Z Q. When A = B, we often use the

notation End(A), End0(A), and End0(A) instead, and often use the term quasi-endomorphism. We

write Isog(A,B) for the set of isogenies A→ B. We write Isog(A,B) ⊆ Hom(A,B) for the subsheaf

of sets consisting of isogenies, and Isog0(A,B) ⊆ Hom0(A,B) for the subsheaf of quasi-isogenies,

meaning those quasi-homomorphisms which are locally of the form mf for some isogeny f and

some nonzero integer m ∈ Z. We write Isog(A,B) (resp. Isog0(A,B)) for the set of isogenies (resp.

quasi-isogenies), consisting of global sections of Isog(A,B) (resp. Isog0(A,B)). We write Isog(A)

and Isog0(A) for the self-isogenies and self quasi-isogenies of A. A quasi-polarization of A is a

quasi-isogeny A → A∨ which is locally of the form mλ for some polarization λ and some positive

integer m ∈ Z>0.

Suppose the abelian schemes A and B are equipped with quasi-polarizations λA : A → A∨

and λB : B → B∨. Given any x ∈ Hom0(B,A) with dual x∨ ∈ Hom0(A∨, B∨), we set x† :=

λ−1
B ◦ x∨ ◦ λA ∈ Hom0(A,B), and call the resulting map † : Hom0(B,A)→ Hom0(A,B) the Rosati

involution. Given m-tuples x, y ∈ Hom0(B,A)m with x = [x1, . . . , xm] and y = [y1, . . . , ym], we

write (x, y) for the m×m matrix whose i, j-th entry is x†iyj . We say that (x, x) is the Gram matrix

of x. If S = Spec k for a field k, the Q-bilinear pairing

Hom0(B,A)×Hom0(B,A) Q

x, y tr(x†y)

(C.1.1)

is symmetric and positive definite (“positivity of the Rosati involution”), where tr : End0(A)→ Q
is the trace for End0(A) acting on the Q-vector space End0(A) by left multiplication.

C.2. Proof. We continue in the setup of Section C.1.

Given any y ∈ End0(B), define a functor Z(y) : (Sch/S)op → Set as

Z(y) := {x ∈ Hom(B,A) : x†x = y}. (C.2.1)

We will check that Z(y) is representable by a scheme which is finite, unramified, and of finite

presentation over S.

Lemma C.2.1. The functor Z(y) is represented by a scheme over S. The structure morphism

Z(y)→ S is separated and locally of finite presentation.
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Proof. By a standard limit argument (e.g. using [SProject, Lemma 01ZM]) we may reduce to the

case where S is Noetherian, affine, and connected. It is also enough to check the case where λA

and λB are polarizations, not just quasi-polarizations.

Existence of the product polarization λB × λA on B ×A implies that B ×A admits a relatively

ample line bundle over S. Thus the Hilbert functor HilbB×A is represented by a scheme, each

of whose connected components is locally projective over S (in the sense of [SProject, Definition

01W8]), see [Nit05, Theorem 5.15] and [SProject, Lemma 0DPF]. By [SProject, Lemma 0D1B], we

know there is a locally closed immersion

Z(y)→ HilbB×A

which sends x : B → A to its graph (1 × x) : B → B × A. In particular, Z(y) is represented by a

scheme which is separated and locally of finite presentation over S. □

Lemma C.2.2. The structure morphism Z(y)→ S is quasi-compact.

Proof. Again, we may reduce to the case where S is affine, Noetherian, and connected by a standard

limit argument. It is also enough to check the case where λA and λB are polarizations, not just

quasi-polarizations.

Consider the graph morphisms

B
1×λB−−−→ B ×B∨

A
1×λA−−−→ A×A∨ .

If PB and PA denote the Poincaré bundles on B×B∨ and A×A∨ respectively, we know that LB :=

(1×λB)∗PB and LA := (1×λA)∗PA are relatively ample line bundles on B and A, respectively, over

S. If πB : B×A→ B and πA : B×A→ A are the natural projections, we know E := π∗BLB⊗π∗ALA
is a relatively ample line bundle on B×A. Moreover, E is isomorphic to the pullback of the Poincaré

bundle PB×A along the graph of the polarization λB × λA of B × A. Let m ∈ Z≥1 be any integer

such that m · λB and m2 · y are both honest homomorphisms (rather than quasi-homomorphisms).

As above, write HilbB×A for the Hilbert scheme associated with B×A. Given a numerical poly-

nomial P : Z→ Z, we write HilbPB×A ⊆ HilbB×A for the open and closed subscheme corresponding

to the Hilbert polynomial P with respect to the line bundle E⊗m2
on B×A. That is, for a S-scheme

T , we have

HilbPB×A(T ) := {Z ∈ HilbB×A(T ) : χ(Zt, E⊗m
2n|Zt) = P (n) for all n ∈ Z and t ∈ T}

(where Zt is the fiber of Z → T over t ∈ T and χ denotes Euler characteristic). We know that

HilbPB×A(T ) is locally projective over S [Nit05, Theorem 5.15], hence quasi-compact over S.

As in the proof of Lemma C.2.1, there is a locally closed immersion Z(y) → HilbB×A which

sends x ∈ Z(y) to its graph 1× x : B → B ×A. To show that Z(y) is quasi-compact, it is enough

to check that Z(y) → HilbB×A factors through HilbPB×A for some fixed numerical polynomial P

(possibly depending on y).
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Consider the line bundle F := L⊗m2

B ⊗ ((1 × λB)∗(m2y × 1)∗PB) on B. For any point s ∈ S,
there is a numerical polynomial P : Z→ Z such that

P (n) = χ(Bs,F⊗n|Bs) for all n ∈ Z (C.2.2)

as in [SProject, Lemma 0BEM]. The polynomial P does not depend on s because S is connected

and the Euler characteristics are locally constant as a function of s (using flatness and properness

and the standard facts [SProject, Lemma 0BDJ] and [SProject, Section 07VJ]).

Let T be a scheme over S, and suppose x ∈ Z(y)(T ). View x as an element of HilbB×A(T ) as

above. We claim that x ∈ HilbPB×A(T ). By taking a base-change to T , we may assume T = S

without loss of generality (to lighten notation). It is enough to check F ∼= (1× x)∗E⊗m2
.

First observe (1×x)∗E⊗m2 ∼= L⊗m
2

B ⊗x∗L⊗m2

A . It is thus enough to verify the identity x∗L⊗m2

A
∼=

(1× λB)∗(m2y × 1)∗PB. Consider the commutative diagram

A A×A∨

B B ×B∨ A×B∨

B ×B∨ .

1×λA

mx

1×λB

m2y×1

mx×mx†∨

mx×1

mx†×1

1×mx†∨

There exists an isomorphism (mx† × 1)∗PB ∼= (1×mx†∨)∗PA (this characterizes mx†∨ as the dual

of mx†). Recall also that m∗LA ∼= L⊗m
2

A (consider a similar diagram as above, with A = B and

x = y = 1, and recall that the pullback of PA along (m×1) : A×A∨ → A×A∨ is isomorphic to P⊗m2

A

because m = m∨). These facts prove the claimed identity x∗L⊗m2

A
∼= (1× λB)∗(m2y × 1)∗PB. □

Lemma C.2.3. The functor Z(y) is represented by a scheme over S, and the structure morphism

Z(y)→ S is finite, unramified, and of finite presentation.

Proof. Again, we may reduce to the case where S is Noetherian by a standard limit argument. By

Lemmas C.2.1 and C.2.2, we already know that Z(y) is represented by a scheme which is separated

and of finite presentation over S.

To see that Z(y) → S is proper, we can use the valuative criterion for discrete valuation rings

[SProject, Lemma 0207] because S is Noetherian. This valuative criterion holds by the Néron

mapping property for abelian schemes over discrete valuation rings.

For unramifiedness, it is enough to check that Z(y)→ S is formally unramified (i.e. satisfies the

infinitesimal lifting criterion of [SProject, Lemma 02HE]). Formal unramifiedness holds because of

rigidity for morphisms of abelian schemes as in [MFK94, Corollary 6.2].

Since unramified morphisms of schemes are locally quasi-finite, and since proper locally quasi-

finite morphisms of schemes are finite, the lemma is proved. □

Recall that if X and Y are categories fibered in groupoids over the fppf site of some base scheme

with Y being a Deligne–Mumford stack, and if f : X → Y is a morphism which is representable

by algebraic spaces, then X is also a Deligne–Mumford stack [SProject, Comment 2142]. This can
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be used in combination with Lemma C.2.3 to verify that various stacks in this work are Deligne–

Mumford.
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